Suppr超能文献

利用骨骼肌 CT 放射组学和机器学习识别晚期非小细胞肺癌患者的肌肉减少症。

Identifying sarcopenia in advanced non-small cell lung cancer patients using skeletal muscle CT radiomics and machine learning.

机构信息

Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China.

出版信息

Thorac Cancer. 2020 Sep;11(9):2650-2659. doi: 10.1111/1759-7714.13598. Epub 2020 Aug 6.

Abstract

BACKGROUND

Sarcopenia has been confirmed as a poor prognostic indicator of lung cancer. However, the lack of abdominal computed tomography (CT) hindered the application to assess the status of sarcopenia. The purpose of this study was to assess the ability of chest CT radiomics combined with machine learning classifiers to identify sarcopenia in advanced non-small cell lung cancer (NSCLC) patients.

METHODS

This study retrospectively analyzed CT images of 99 patients with NSCLC. Skeletal muscle radiomics were extracted from a single axial slice of the chest CT scan at the 12th thoracic vertebrae level. In total, 854 radiomic and clinical features were obtained from each patient. Feature selection was conducted with FeatureSelector module, optimal key features were fed into the lightGBM classifier for model construction, and Bayesian optimization was adopted to tune hyperparameters. The model's performance was evaluated by specificity, sensitivity, accuracy, precision, F1-score, Matthew's correlation coefficient (MCC), Cohen's kappa coefficient (Kappa), and AUC.

RESULTS

A total of 40 patients were found to have sarcopenia. Five optimal features were selected. In the base lightGBM model, the specificity, sensitivity, accuracy, precision, F1-score, AUC, MCC, Kappa of validation set were 0.889, 0.750, 0.833, 0.818, 0.783, 0.819, 0.649, 0.648, respectively. After Bayesian hyperparameter tuning, the optimized lightGBM model achieved better prediction performance, and the corresponding values were 0.944, 0.833, 0.900, 0.909, 0.870, 0.889, 0.791, 0.789, respectively.

CONCLUSIONS

Chest CT-based radiomics has the potential to identify sarcopenia in NSCLC patients with the lightGBM classifier, and the optimal lightGBM model via Bayesian hyperparameter tuning demonstrated better performance.

KEY POINTS

SIGNIFICANT FINDINGS OF THE STUDY: Our study demonstrates that chest CT-based radiomics combined with lightGBM classifier has the ability to identify sarcopenia in NSCLC patients.

WHAT THIS STUDY ADDS

Skeletal muscle radiomics would be a potential biomarker for sarcopenia identity in NSCLC patients.

摘要

背景

肌肉减少症已被证实是肺癌不良预后的一个指标。然而,缺乏腹部计算机断层扫描(CT)阻碍了评估肌肉减少症状态的应用。本研究的目的是评估胸部 CT 放射组学结合机器学习分类器在识别晚期非小细胞肺癌(NSCLC)患者肌肉减少症中的能力。

方法

本研究回顾性分析了 99 例 NSCLC 患者的 CT 图像。从胸部 CT 扫描第 12 胸椎水平的单个轴向切片中提取骨骼肌放射组学。从每个患者中总共获得 854 个放射组学和临床特征。使用 FeatureSelector 模块进行特征选择,将最优关键特征输入 lightGBM 分类器构建模型,并采用贝叶斯优化调整超参数。通过特异性、敏感性、准确性、精确性、F1 分数、马修相关系数(MCC)、科恩氏kappa 系数(Kappa)和 AUC 评估模型性能。

结果

共发现 40 例患者存在肌肉减少症。选择了 5 个最优特征。在基础 lightGBM 模型中,验证集的特异性、敏感性、准确性、精确性、F1 分数、AUC、MCC、Kappa 分别为 0.889、0.750、0.833、0.818、0.783、0.819、0.649、0.648。经过贝叶斯超参数调整后,优化的 lightGBM 模型实现了更好的预测性能,相应值分别为 0.944、0.833、0.900、0.909、0.870、0.889、0.791、0.789。

结论

基于胸部 CT 的放射组学具有利用 lightGBM 分类器识别 NSCLC 患者肌肉减少症的潜力,且通过贝叶斯超参数调整的最优 lightGBM 模型表现出更好的性能。

关键点

研究的重要发现:本研究表明,基于胸部 CT 的放射组学结合 lightGBM 分类器具有识别 NSCLC 患者肌肉减少症的能力。

本研究的新增内容

骨骼肌放射组学可能是 NSCLC 患者肌肉减少症识别的潜在生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验