Suppr超能文献

流线交叉:肺腺泡中气溶胶扩散的一种基本机制。

Streamline crossing: An essential mechanism for aerosol dispersion in the pulmonary acinus.

作者信息

Fishler Rami, Ostrovski Yan, Lu Chao-Yi, Sznitman Josué

机构信息

Department of Biomedical Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel.

Department of Biomedical Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel.

出版信息

J Biomech. 2017 Jan 4;50:222-227. doi: 10.1016/j.jbiomech.2016.11.043. Epub 2016 Nov 13.

Abstract

The dispersion of inhaled microparticles in the pulmonary acinus of the lungs is often attributed to the complex interplay between convective mixing, due to irreversible flows, and intrinsic particle motion (i.e. gravity and diffusion). However, the role of each mechanism, the exact nature of such interplay between them and their relative importance still remain unclear. To gain insight into these dispersive mechanisms, we track liquid-suspended microparticles and extract their effective diffusivities inside an anatomically-inspired microfluidic acinar model. Such results are then compared to experiments and numerical simulations in a straight channel. While alveoli of the proximal acinar generations exhibit convective mixing characteristics that lead to irreversible particle trajectories, this local effect is overshadowed by a more dominant dispersion mechanism across the ductal branching network that arises from small but significant streamline crossing due to intrinsic diffusional motion in the presence of high velocity gradients. We anticipate that for true airborne particles, which exhibit much higher intrinsic motion, streamline crossing would be even more significant.

摘要

吸入性微粒在肺腺泡内的扩散通常归因于不可逆流动引起的对流混合与微粒固有运动(即重力和扩散)之间的复杂相互作用。然而,每种机制的作用、它们之间这种相互作用的确切性质及其相对重要性仍不清楚。为了深入了解这些扩散机制,我们追踪液体悬浮的微粒,并在一个受解剖学启发的微流体腺泡模型中提取它们的有效扩散率。然后将这些结果与直通道中的实验和数值模拟进行比较。虽然近端腺泡代的肺泡表现出导致微粒轨迹不可逆的对流混合特征,但这种局部效应被导管分支网络中更占主导地位的扩散机制所掩盖,这种机制源于在存在高速梯度的情况下,由于固有扩散运动而产生的小而显著的流线交叉。我们预计,对于具有更高固有运动的真正空气传播微粒,流线交叉将更加显著。

相似文献

1
Streamline crossing: An essential mechanism for aerosol dispersion in the pulmonary acinus.
J Biomech. 2017 Jan 4;50:222-227. doi: 10.1016/j.jbiomech.2016.11.043. Epub 2016 Nov 13.
3
Particle dynamics and deposition in true-scale pulmonary acinar models.
Sci Rep. 2015 Sep 11;5:14071. doi: 10.1038/srep14071.
4
The role of anisotropic expansion for pulmonary acinar aerosol deposition.
J Biomech. 2016 Oct 3;49(14):3543-3548. doi: 10.1016/j.jbiomech.2016.08.025. Epub 2016 Aug 31.
5
Acinus-on-a-chip: a microfluidic platform for pulmonary acinar flows.
J Biomech. 2013 Nov 15;46(16):2817-23. doi: 10.1016/j.jbiomech.2013.08.020. Epub 2013 Sep 13.
6
Role of alveolar topology on acinar flows and convective mixing.
J Biomech Eng. 2014 Jun;136(6):061007. doi: 10.1115/1.4027328.
7
Revisiting pulmonary acinar particle transport: convection, sedimentation, diffusion, and their interplay.
J Appl Physiol (1985). 2015 Jun 1;118(11):1375-85. doi: 10.1152/japplphysiol.01117.2014.
8
Gravitational deposition in a rhythmically expanding and contracting alveolus.
J Appl Physiol (1985). 2003 Aug;95(2):657-71. doi: 10.1152/japplphysiol.00770.2002. Epub 2003 Mar 14.
9
[Progress on numerical simulation of the deposition of inhaled particles in human pulmonary acinus region].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019 Jun 25;36(3):499-503. doi: 10.7507/1001-5515.201808001.
10
Aerosol bolus dispersion in acinar airways--influence of gravity and airway asymmetry.
J Appl Physiol (1985). 2012 Aug;113(3):442-50. doi: 10.1152/japplphysiol.01549.2011. Epub 2012 Jun 7.

引用本文的文献

1
Lung-on-a-chip: From design principles to disease applications.
Biomicrofluidics. 2025 Mar 28;19(2):021501. doi: 10.1063/5.0257908. eCollection 2025 Mar.
2
Particle Deposition in Large-Scale Human Tracheobronchial Airways Predicted by Single-Path Modelling.
Int J Environ Res Public Health. 2023 Mar 4;20(5):4583. doi: 10.3390/ijerph20054583.
3
Surface tension effects on flow dynamics and alveolar mechanics in the acinar region of human lung.
Heliyon. 2022 Oct 12;8(10):e11026. doi: 10.1016/j.heliyon.2022.e11026. eCollection 2022 Oct.
4
Microflows in two-generation alveolar cells at an acinar bifurcation.
Biomicrofluidics. 2022 Sep 6;16(5):054101. doi: 10.1063/5.0098302. eCollection 2022 Sep.
5
Recent advances in the understanding of alveolar flow.
Biomicrofluidics. 2022 Apr 13;16(2):021502. doi: 10.1063/5.0084415. eCollection 2022 Mar.
6
Microparticle Transport and Sedimentation in a Rhythmically Expanding Alveolar Chip.
Micromachines (Basel). 2022 Mar 20;13(3):485. doi: 10.3390/mi13030485.
7
Advanced human-relevant in vitro pulmonary platforms for respiratory therapeutics.
Adv Drug Deliv Rev. 2021 Sep;176:113901. doi: 10.1016/j.addr.2021.113901. Epub 2021 Jul 29.
8
9
Biomimetics of the pulmonary environment : A microfluidics perspective.
Biomicrofluidics. 2018 May 29;12(4):042209. doi: 10.1063/1.5023034. eCollection 2018 Jul.
10
One (sub-)acinus for all: Fate of inhaled aerosols in heterogeneous pulmonary acinar structures.
Eur J Pharm Sci. 2018 Feb 15;113:53-63. doi: 10.1016/j.ejps.2017.09.033. Epub 2017 Sep 24.

本文引用的文献

1
Augmenting regional and targeted delivery in the pulmonary acinus using magnetic particles.
Int J Nanomedicine. 2016 Jul 26;11:3385-95. doi: 10.2147/IJN.S102138. eCollection 2016.
2
Particle dynamics and deposition in true-scale pulmonary acinar models.
Sci Rep. 2015 Sep 11;5:14071. doi: 10.1038/srep14071.
3
Revisiting pulmonary acinar particle transport: convection, sedimentation, diffusion, and their interplay.
J Appl Physiol (1985). 2015 Jun 1;118(11):1375-85. doi: 10.1152/japplphysiol.01117.2014.
4
Role of alveolar topology on acinar flows and convective mixing.
J Biomech Eng. 2014 Jun;136(6):061007. doi: 10.1115/1.4027328.
5
Particle transport and deposition: basic physics of particle kinetics.
Compr Physiol. 2013 Oct;3(4):1437-71. doi: 10.1002/cphy.c100085.
6
Acinus-on-a-chip: a microfluidic platform for pulmonary acinar flows.
J Biomech. 2013 Nov 15;46(16):2817-23. doi: 10.1016/j.jbiomech.2013.08.020. Epub 2013 Sep 13.
7
Respiratory microflows in the pulmonary acinus.
J Biomech. 2013 Jan 18;46(2):284-98. doi: 10.1016/j.jbiomech.2012.10.028. Epub 2012 Nov 21.
8
Aerosol bolus dispersion in acinar airways--influence of gravity and airway asymmetry.
J Appl Physiol (1985). 2012 Aug;113(3):442-50. doi: 10.1152/japplphysiol.01549.2011. Epub 2012 Jun 7.
9
Why chaotic mixing of particles is inevitable in the deep lung.
J Theor Biol. 2011 Oct 7;286(1):57-66. doi: 10.1016/j.jtbi.2011.06.038. Epub 2011 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验