Suppr超能文献

反向体外选择使对映体 L-适体相互作用的全面分析成为可能。

Inverse In Vitro Selection Enables Comprehensive Analysis of Cross-Chiral L-Aptamer Interactions.

机构信息

Department of Chemistry, Texas A&M University, College Station, 77843 TX, USA.

Current address: Department of Chemistry and Biochemistry, Florida State University, 32304, Tallahassee, FL, USA.

出版信息

Chembiochem. 2022 Dec 16;23(24):e202200520. doi: 10.1002/cbic.202200520. Epub 2022 Nov 22.

Abstract

Aptamers composed of mirror-image L-(deoxy)ribose nucleic acids, referred to as L-aptamers, are a promising class of RNA-binding reagents. Yet, the selectivity of cross-chiral interactions between L-aptamers and their RNA targets remain poorly characterized, limiting the potential utility of this approach for applications in biological systems. Herein, we carried out the first comprehensive analysis of cross-chiral L-aptamer selectivity using a newly developed "inverse" in vitro selection approach that exploits the genetic nature of the D-RNA ligand. By employing a library of more than a million target-derived sequences, we determined the RNA sequence and structural preference of a model L-aptamer and revealed previously unidentified and potentially broad off-target RNA binding behaviors. These results provide valuable information for assessing the likelihood and consequences of potential off-target interactions and reveal strategies to mitigate these effects. Thus, inverse in vitro selection provides several opportunities to advance L-aptamer technology.

摘要

由镜像 L-(脱氧)核糖核酸组成的适体,称为 L-适体,是一类很有前途的 RNA 结合试剂。然而,L-适体与其 RNA 靶标之间的交叉手性相互作用的选择性仍未得到很好的描述,限制了该方法在生物系统中的应用潜力。在此,我们利用新开发的“反向”体外选择方法,对 L-适体的交叉手性选择性进行了首次全面分析,该方法利用了 D-RNA 配体的遗传性质。通过使用一个包含超过 100 万个靶序列的文库,我们确定了一个模型 L-适体的 RNA 序列和结构偏好,并揭示了以前未识别的、可能广泛存在的潜在脱靶 RNA 结合行为。这些结果为评估潜在脱靶相互作用的可能性和后果提供了有价值的信息,并揭示了减轻这些影响的策略。因此,反向体外选择为 L-适体技术的发展提供了多个机会。

相似文献

1
Inverse In Vitro Selection Enables Comprehensive Analysis of Cross-Chiral L-Aptamer Interactions.
Chembiochem. 2022 Dec 16;23(24):e202200520. doi: 10.1002/cbic.202200520. Epub 2022 Nov 22.
2
An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.
Methods. 2016 Mar 15;97:51-7. doi: 10.1016/j.ymeth.2015.12.005. Epub 2015 Dec 8.
3
Characterisation of aptamer-target interactions by branched selection and high-throughput sequencing of SELEX pools.
Nucleic Acids Res. 2015 Dec 2;43(21):e139. doi: 10.1093/nar/gkv700. Epub 2015 Jul 10.
4
Development of RNA G-quadruplex (rG4)-targeting L-RNA aptamers by rG4-SELEX.
Nat Protoc. 2022 Jun;17(6):1385-1414. doi: 10.1038/s41596-022-00679-6. Epub 2022 Apr 20.
6
7
Development of Better Aptamers: Structured Library Approaches, Selection Methods, and Chemical Modifications.
Angew Chem Int Ed Engl. 2024 Apr 15;63(16):e202318665. doi: 10.1002/anie.202318665. Epub 2024 Feb 16.
8
Implementation of High-Throughput Sequencing (HTS) in Aptamer Selection Technology.
Int J Mol Sci. 2020 Nov 20;21(22):8774. doi: 10.3390/ijms21228774.
9
The Effects of SELEX Conditions on the Resultant Aptamer Pools in the Selection of Aptamers Binding to Bacterial Cells.
J Mol Evol. 2015 Dec;81(5-6):194-209. doi: 10.1007/s00239-015-9711-y. Epub 2015 Nov 4.
10
Selection of 2'-Deoxy-2'-Fluoroarabino Nucleic Acid (FANA) Aptamers That Bind HIV-1 Integrase with Picomolar Affinity.
ACS Chem Biol. 2019 Oct 18;14(10):2166-2175. doi: 10.1021/acschembio.9b00237. Epub 2019 Oct 7.

引用本文的文献

1
Cross-chiral exponential amplification of an RNA enzyme.
Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2413668121. doi: 10.1073/pnas.2413668121. Epub 2024 Oct 22.
2
RNA-Based Sensor Systems for Affordable Diagnostics in the Age of Pandemics.
ACS Synth Biol. 2024 Apr 19;13(4):1026-1037. doi: 10.1021/acssynbio.3c00698. Epub 2024 Apr 8.

本文引用的文献

1
RNA-Binding Macrocyclic Peptides.
Front Mol Biosci. 2022 Apr 19;9:883060. doi: 10.3389/fmolb.2022.883060. eCollection 2022.
2
Targeting a conserved structural element from the SARS-CoV-2 genome using l-DNA aptamers.
RSC Chem Biol. 2021 Oct 20;3(1):79-84. doi: 10.1039/d1cb00172h. eCollection 2022 Jan 5.
3
Targeting RNA with small molecules: from fundamental principles towards the clinic.
Chem Soc Rev. 2021 Mar 1;50(4):2224-2243. doi: 10.1039/d0cs01261k.
4
First small-molecule drug targeting RNA gains momentum.
Nat Biotechnol. 2021 Jan;39(1):6-8. doi: 10.1038/s41587-020-00788-1.
5
Specific suppression of D-RNA G-quadruplex-protein interaction with an L-RNA aptamer.
Nucleic Acids Res. 2020 Oct 9;48(18):10125-10141. doi: 10.1093/nar/gkaa759.
6
How We Think about Targeting RNA with Small Molecules.
J Med Chem. 2020 Sep 10;63(17):8880-8900. doi: 10.1021/acs.jmedchem.9b01927. Epub 2020 Mar 26.
7
Specific Binding of a d-RNA G-Quadruplex Structure with an l-RNA Aptamer.
Angew Chem Int Ed Engl. 2020 Mar 23;59(13):5293-5297. doi: 10.1002/anie.201914955. Epub 2020 Feb 12.
8
In vitro selection of l-DNA aptamers that bind a structured d-RNA molecule.
Nucleic Acids Res. 2020 Feb 28;48(4):1669-1680. doi: 10.1093/nar/gkz1236.
9
Synthetic Antibody Binding to a Preorganized RNA Domain of Hepatitis C Virus Internal Ribosome Entry Site Inhibits Translation.
ACS Chem Biol. 2020 Jan 17;15(1):205-216. doi: 10.1021/acschembio.9b00785. Epub 2019 Dec 10.
10
The roles of structural dynamics in the cellular functions of RNAs.
Nat Rev Mol Cell Biol. 2019 Aug;20(8):474-489. doi: 10.1038/s41580-019-0136-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验