Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30239, Krakow, Poland.
Department of Physics of Nanostructures and Nanotechnology, Institute of Physics, Jagiellonian University, Prof. Stanislawa Lojasiewicza 11, 30348, Krakow, Poland.
Biomech Model Mechanobiol. 2023 Feb;22(1):177-187. doi: 10.1007/s10237-022-01639-5. Epub 2022 Oct 25.
We present a model useful for interpretation of indentation experiments on animal cells. We use finite element modeling for a thorough representation of the complex structure of an animal cell. In our model, the crucial constituent is the cell cortex-a rigid layer of cytoplasmic proteins present on the inner side of the cell membrane. It plays a vital role in the mechanical interactions between cells. The cell cortex is modeled by a three-dimensional solid to reflect its bending stiffness. This approach allows us to interpret the results of the indentation measurements and extract the mechanical properties of the individual elements of the cell structure. During the simulations, we scan a broad range of parameters such as cortex thickness and Young's modulus, cytoplasm Young's modulus, and indenter radius, which define cell properties and experimental conditions. Finally, we propose a simple closed-form formula that approximates the simulated results with satisfactory accuracy. Our formula is as easy to use as Hertz's function to extract cell properties from the measurement, yet it considers the cell's inner structure, including cell cortex, cytoplasm, and nucleus.
我们提出了一个可用于解释动物细胞压痕实验的模型。我们使用有限元建模来充分表示动物细胞的复杂结构。在我们的模型中,关键组成部分是细胞皮质——细胞膜内侧存在的一层刚性细胞质蛋白。它在细胞之间的机械相互作用中起着至关重要的作用。细胞皮质通过三维实体建模来反映其弯曲刚度。这种方法使我们能够解释压痕测量的结果,并提取细胞结构各个元素的机械性能。在模拟过程中,我们扫描了广泛的参数,如皮质厚度和杨氏模量、细胞质杨氏模量和压头半径,这些参数定义了细胞特性和实验条件。最后,我们提出了一个简单的封闭形式公式,该公式可以用令人满意的精度来近似模拟结果。我们的公式像赫兹函数一样易于使用,可以从测量中提取细胞特性,但它考虑了细胞的内部结构,包括细胞皮质、细胞质和细胞核。