Suppr超能文献

异丙基(三甲基硅基)酰胺:一种稳定且高溶解性的二异丙基胺锂类似物。

Sodium Isopropyl(trimethylsilyl)amide: A Stable and Highly Soluble Lithium Diisopropylamide Mimic.

机构信息

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States.

出版信息

J Org Chem. 2022 Nov 4;87(21):14223-14229. doi: 10.1021/acs.joc.2c01745. Epub 2022 Oct 25.

Abstract

The preparation, structure, physical properties, and reactivities of sodium isopropyl(trimethylsilyl)amide (NaPTA) are described. The solubilities at room temperature range from -heptane (0.55 M), -hexane (0.60 M), toluene (0.65 M), MTBE (1.7 M), EtN (3.2 M), and THF (>6.0 M). The half-life to destruction in neat THF is >1 year at 25 °C and 7 days at 70 °C, which compares favorably to 2.5 months and 1.5 days, respectively, for LDA in neat THF. This study focuses on NaPTA in THF. Si NMR spectroscopy shows exclusively a mixture of and stereoisomeric dimers in 0.10-12 M THF in hexane. Density functional theory (DFT) computations suggest that the p is intermediate between dimeric sodium diisopropylamide (NaDA) and dimeric sodium hexamethyldisilazide (NaHMDS). Metalations of arenes, epoxides, ketones, hydrazones, alkenes, and alkyl halides show higher reactivities than LDA ( = 1-30). While the rates of arene metalation are high, the lower p of NaPTA limits the substrates. Metalation of pseudoephedrate-based carboxamides to form disodiated Myers enolates solves several challenging technical problems.

摘要

本文描述了异丙基(三甲基硅基)酰胺钠(NaPTA)的制备、结构、物理性质和反应活性。在室温下的溶解度范围从庚烷(0.55 M)、己烷(0.60 M)、甲苯(0.65 M)、MTBE(1.7 M)、EtN(3.2 M)和 THF(>6.0 M)。在 25°C 下,纯 THF 中的半衰期至破坏>1 年,而在 70°C 下为 7 天,这与 LDA 在纯 THF 中的半衰期分别为 2.5 个月和 1.5 天相比具有优势。本研究重点关注 THF 中的 NaPTA。Si NMR 光谱显示在 0.10-12 M THF 中在己烷中仅存在和异构体二聚体的混合物。密度泛函理论(DFT)计算表明 p 介于二异丙基酰胺钠(NaDA)和六甲基二硅氮烷钠(NaHMDS)之间。芳族化合物、环氧化物、酮、腙、烯烃和烷基卤化物的金属化反应活性高于 LDA(=1-30)。虽然芳族化合物的金属化反应速率很高,但 NaPTA 的 p 较低限制了底物的范围。基于伪麻黄碱的酰胺的金属化形成双钠盐 Myers 烯醇化物解决了几个具有挑战性的技术问题。

相似文献

1
Sodium Isopropyl(trimethylsilyl)amide: A Stable and Highly Soluble Lithium Diisopropylamide Mimic.
J Org Chem. 2022 Nov 4;87(21):14223-14229. doi: 10.1021/acs.joc.2c01745. Epub 2022 Oct 25.
2
Sodium Diisopropylamide in N,N-Dimethylethylamine: Reactivity, Selectivity, and Synthetic Utility.
J Org Chem. 2016 Nov 18;81(22):11312-11315. doi: 10.1021/acs.joc.6b02287. Epub 2016 Nov 2.
3
Sodium Diisopropylamide in Tetrahydrofuran: Selectivities, Rates, and Mechanisms of Arene Metalations.
J Am Chem Soc. 2017 Oct 25;139(42):15197-15204. doi: 10.1021/jacs.7b08734. Epub 2017 Oct 16.
4
Sodium Diisopropylamide-Mediated Dehydrohalogenations: Influence of Primary- and Secondary-Shell Solvation.
J Org Chem. 2019 Sep 6;84(17):10860-10869. doi: 10.1021/acs.joc.9b01428. Epub 2019 Aug 22.
5
Sodium Diisopropylamide: Aggregation, Solvation, and Stability.
J Am Chem Soc. 2017 Jun 14;139(23):7921-7930. doi: 10.1021/jacs.7b03061. Epub 2017 May 30.
6
Autocatalysis in lithium diisopropylamide-mediated ortholithiations.
J Am Chem Soc. 2008 Dec 31;130(52):18008-17. doi: 10.1021/ja807331k.
8
Lithium Enolates Derived from Pyroglutaminol: Mechanism and Stereoselectivity of an Azaaldol Addition.
J Am Chem Soc. 2016 Aug 17;138(32):10276-83. doi: 10.1021/jacs.6b05481. Epub 2016 Aug 8.
9
Sodium Diisopropylamide in Tetrahydrofuran: Selectivities, Rates, and Mechanisms of Alkene Isomerizations and Diene Metalations.
J Am Chem Soc. 2017 Aug 23;139(33):11544-11549. doi: 10.1021/jacs.7b05218. Epub 2017 Aug 14.

引用本文的文献

1
The Versatile and Strategic -Carbamate Directed Metalation Group in the Synthesis of Aromatic Molecules: An Update.
Chem Rev. 2024 Jun 26;124(12):7731-7828. doi: 10.1021/acs.chemrev.3c00923. Epub 2024 Jun 12.
2
Carbon-Nitrogen Bond Formation Using Sodium Hexamethyldisilazide: Solvent-Dependent Reactivities and Mechanisms.
J Am Chem Soc. 2023 Nov 1;145(43):23568-23584. doi: 10.1021/jacs.3c07317. Epub 2023 Oct 19.

本文引用的文献

1
Halogen-sodium exchange enables efficient access to organosodium compounds.
Commun Chem. 2021 May 24;4(1):76. doi: 10.1038/s42004-021-00513-2.
2
Enhancing Metalating Efficiency of the Sodium Amide NaTMP in Arene Borylation Applications.
Angew Chem Int Ed Engl. 2022 Jun 27;61(26):e202204262. doi: 10.1002/anie.202204262. Epub 2022 May 5.
3
Ketone Enolization with Sodium Hexamethyldisilazide: Solvent- and Substrate-Dependent - Selectivity and Affiliated Mechanisms.
J Am Chem Soc. 2021 Oct 27;143(42):17452-17464. doi: 10.1021/jacs.1c06529. Epub 2021 Oct 13.
4
Structure, Reactivity, and Synthetic Applications of Sodium Diisopropylamide.
Synthesis (Stuttg). 2020;52(10):1478-1497. doi: 10.1055/s-0039-1690846. Epub 2020 Mar 23.
5
(2-Ethylhexyl)sodium: A Hexane-Soluble Reagent for Br/Na-Exchanges and Directed Metalations in Continuous Flow.
Angew Chem Int Ed Engl. 2021 Jun 21;60(26):14296-14301. doi: 10.1002/anie.202103031. Epub 2021 May 3.
6
Structural Motifs of Alkali Metal Superbases in Non-coordinating Solvents.
Chemistry. 2021 Jan 13;27(3):888-904. doi: 10.1002/chem.202002812. Epub 2020 Nov 9.
7
Alkali-Metal Mediation: Diversity of Applications in Main-Group Organometallic Chemistry.
Angew Chem Int Ed Engl. 2021 Apr 19;60(17):9247-9262. doi: 10.1002/anie.202010963. Epub 2020 Dec 3.
8
Organic Superbases in Recent Synthetic Methodology Research.
Chemistry. 2021 Mar 1;27(13):4216-4229. doi: 10.1002/chem.202003580. Epub 2021 Jan 12.
9
Sodium Hexamethyldisilazide: Using N-Si Scalar Coupling to Determine Aggregation and Solvation States.
J Am Chem Soc. 2020 Apr 15;142(15):6852-6855. doi: 10.1021/jacs.0c00331. Epub 2020 Apr 1.
10
Disodium Salts of Pseudoephedrine-Derived Myers Enolates: Stereoselectivity and Mechanism of Alkylation.
J Am Chem Soc. 2019 Oct 23;141(42):16865-16876. doi: 10.1021/jacs.9b08176. Epub 2019 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验