Suppr超能文献

ATP13A1 防止折叠功能正常的错位和定向错误的蛋白质的 ERAD。

ATP13A1 prevents ERAD of folding-competent mislocalized and misoriented proteins.

机构信息

Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA.

Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA.

出版信息

Mol Cell. 2022 Nov 17;82(22):4277-4289.e10. doi: 10.1016/j.molcel.2022.09.035. Epub 2022 Oct 24.

Abstract

The biosynthesis of thousands of proteins requires targeting a signal sequence or transmembrane segment (TM) to the endoplasmic reticulum (ER). These hydrophobic ɑ helices must localize to the appropriate cellular membrane and integrate in the correct topology to maintain a high-fidelity proteome. Here, we show that the P5A-ATPase ATP13A1 prevents the accumulation of mislocalized and misoriented proteins, which are eliminated by different ER-associated degradation (ERAD) pathways in mammalian cells. Without ATP13A1, mitochondrial tail-anchored proteins mislocalize to the ER through the ER membrane protein complex and are cleaved by signal peptide peptidase for ERAD. ATP13A1 also facilitates the topogenesis of a subset of proteins with an N-terminal TM or signal sequence that should insert into the ER membrane with a cytosolic N terminus. Without ATP13A1, such proteins accumulate in the wrong orientation and are targeted for ERAD by distinct ubiquitin ligases. Thus, ATP13A1 prevents ERAD of diverse proteins capable of proper folding.

摘要

数千种蛋白质的生物合成需要将信号序列或跨膜片段(TM)靶向内质网(ER)。这些疏水性的ɑ螺旋必须定位于适当的细胞膜并以正确的拓扑结构整合,以维持高保真度的蛋白质组。在这里,我们表明 P5A-ATPase ATP13A1 可防止错误定位和定向的蛋白质积累,这些蛋白质在哺乳动物细胞中通过不同的内质网相关降解(ERAD)途径被消除。没有 ATP13A1,线粒体尾部锚定蛋白通过内质网膜蛋白复合物错误定位到 ER,并被信号肽肽酶切割进行 ERAD。ATP13A1 还促进了具有 N 端 TM 或信号序列的蛋白质亚群的拓扑发生,这些蛋白质应该以内质网细胞质 N 端插入内质网膜。没有 ATP13A1,此类蛋白质以错误的方向积累,并被不同的泛素连接酶靶向 ERAD。因此,ATP13A1 可防止具有正确折叠能力的多种蛋白质发生 ERAD。

相似文献

1
ATP13A1 prevents ERAD of folding-competent mislocalized and misoriented proteins.
Mol Cell. 2022 Nov 17;82(22):4277-4289.e10. doi: 10.1016/j.molcel.2022.09.035. Epub 2022 Oct 24.
3
Previously unknown role for the ubiquitin ligase Ubr1 in endoplasmic reticulum-associated protein degradation.
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15271-6. doi: 10.1073/pnas.1304928110. Epub 2013 Aug 29.
4
An ATP13A1-assisted topogenesis pathway for folding multi-spanning membrane proteins.
Mol Cell. 2024 May 16;84(10):1917-1931.e15. doi: 10.1016/j.molcel.2024.04.010. Epub 2024 May 8.
6
Endoplasmic Reticulum-Associated Protein Degradation.
Cold Spring Harb Perspect Biol. 2022 Dec 1;14(12):a041247. doi: 10.1101/cshperspect.a041247.
7
Quality Control of ER Membrane Proteins by the RNF185/Membralin Ubiquitin Ligase Complex.
Mol Cell. 2020 Sep 3;79(5):768-781.e7. doi: 10.1016/j.molcel.2020.07.009. Epub 2020 Jul 31.
8
10
Endoplasmic Reticulum-associated Degradation of Pca1p, a Polytopic Protein, via Interaction with the Proteasome at the Membrane.
J Biol Chem. 2016 Jul 15;291(29):15082-92. doi: 10.1074/jbc.M116.726265. Epub 2016 May 12.

引用本文的文献

1
Shaping the composition of the mitochondrial outer membrane.
Nat Cell Biol. 2025 Jun;27(6):890-901. doi: 10.1038/s41556-025-01683-0. Epub 2025 Jun 16.
2
ATP13A1 engages SEC61 to facilitate substrate-specific translocation.
Sci Adv. 2025 Jun 13;11(24):eadt1346. doi: 10.1126/sciadv.adt1346. Epub 2025 Jun 11.
3
ARMC1 partitions between distinct complexes and assembles MIRO with MTFR to control mitochondrial distribution.
Sci Adv. 2025 Apr 11;11(15):eadu5091. doi: 10.1126/sciadv.adu5091. Epub 2025 Apr 9.
4
Overcoming Fluorescence Loss in mEOS-based AAA+ Unfoldase Reporters Through Covalent Linkage.
bioRxiv. 2025 Jan 15:2025.01.14.633048. doi: 10.1101/2025.01.14.633048.
5
Topology surveillance of the lanosterol demethylase CYP51A1 by signal peptide peptidase.
J Cell Sci. 2024 Dec 1;137(23). doi: 10.1242/jcs.262333. Epub 2024 Dec 12.
6
The structure and function of P5A-ATPases.
Nat Commun. 2024 Nov 6;15(1):9605. doi: 10.1038/s41467-024-53757-6.
7
The ER-SURF pathway uses ER-mitochondria contact sites for protein targeting to mitochondria.
EMBO Rep. 2024 Apr;25(4):2071-2096. doi: 10.1038/s44319-024-00113-w. Epub 2024 Apr 2.
8
Structural insights into human EMC and its interaction with VDAC.
Aging (Albany NY). 2024 Mar 15;16(6):5501-5525. doi: 10.18632/aging.205660.
9
The ER membrane protein complex restricts mitophagy by controlling BNIP3 turnover.
EMBO J. 2024 Jan;43(1):32-60. doi: 10.1038/s44318-023-00006-z. Epub 2023 Dec 15.
10
Spf1 and Ste24: quality controllers of transmembrane protein topology in the eukaryotic cell.
Front Cell Dev Biol. 2023 Aug 3;11:1220441. doi: 10.3389/fcell.2023.1220441. eCollection 2023.

本文引用的文献

1
TMUB1 is an endoplasmic reticulum-resident escortase that promotes the p97-mediated extraction of membrane proteins for degradation.
Mol Cell. 2022 Sep 15;82(18):3453-3467.e14. doi: 10.1016/j.molcel.2022.07.006. Epub 2022 Aug 11.
2
Mitochondrial antiviral-signalling protein is a client of the BAG6 protein quality control complex.
J Cell Sci. 2022 May 1;135(9). doi: 10.1242/jcs.259596. Epub 2022 May 11.
3
P5A ATPase controls ER translocation of Wnt in neuronal migration.
Cell Rep. 2021 Oct 26;37(4):109901. doi: 10.1016/j.celrep.2021.109901.
4
Selective destabilization of polypeptides synthesized from NMD-targeted transcripts.
Mol Biol Cell. 2021 Dec 1;32(22):ar38. doi: 10.1091/mbc.E21-08-0382. Epub 2021 Sep 29.
5
The mechanisms of integral membrane protein biogenesis.
Nat Rev Mol Cell Biol. 2022 Feb;23(2):107-124. doi: 10.1038/s41580-021-00413-2. Epub 2021 Sep 23.
6
Sequence-based features that are determinant for tail-anchored membrane protein sorting in eukaryotes.
Traffic. 2021 Sep;22(9):306-318. doi: 10.1111/tra.12809. Epub 2021 Aug 3.
7
Capture and delivery of tail-anchored proteins to the endoplasmic reticulum.
J Cell Biol. 2021 Aug 2;220(8). doi: 10.1083/jcb.202105004. Epub 2021 Jul 15.
8
An alternative pathway for membrane protein biogenesis at the endoplasmic reticulum.
Commun Biol. 2021 Jul 1;4(1):828. doi: 10.1038/s42003-021-02363-z.
9
Measurement of co-localization of objects in dual-colour confocal images.
J Microsc. 1993 Mar;169(3):375-382. doi: 10.1111/j.1365-2818.1993.tb03313.x.
10
Translocation of Proteins through a Distorted Lipid Bilayer.
Trends Cell Biol. 2021 Jun;31(6):473-484. doi: 10.1016/j.tcb.2021.01.002. Epub 2021 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验