Plyer Louis, Marcou Gilles, Perves Céline, Schurhammer Rachel, Varnek Alexandre
Faculté de Chimie, University of Strasbourg, Strasbourg, France.
Laboratory of Chemoinformatics-UMR7140, University of Strasbourg, Strasbourg, France.
J Cheminform. 2022 Oct 26;14(1):72. doi: 10.1186/s13321-022-00645-0.
We report a novel approach for grading chemical structure drawings for remote teaching, integrated into the Moodle platform. Typically, existing online platforms use a binary grading system, which often fails to give a nuanced evaluation of the answers given by the students. Therefore, such platforms are unevenly adapted to different disciplines. This is particularly true in the case of chemical structures, where most questions simply cannot be evaluated on a true/false basis. Specifically, a strict comparison of candidate and expected chemical structures is not sufficient when some tolerance is deemed acceptable. To overcome this limitation, we have developed a grading workflow based on the pairwise similarity score of two considered chemical structures. This workflow is implemented as a Moodle plugin, using the Chemdoodle engine for drawing structures and communicating with a REST server to compute the similarity score using molecular descriptors. The plugin ( https://github.com/Laboratoire-de-Chemoinformatique/moodle-qtype_molsimilarity ) is easily adaptable to any academic user; both embedding and similarity measures can be configured.
我们报告了一种用于远程教学的化学结构绘图评分新方法,该方法已集成到Moodle平台中。通常,现有的在线平台使用二元评分系统,这种系统往往无法对学生给出的答案进行细致入微的评估。因此,此类平台对不同学科的适应性参差不齐。在化学结构方面尤其如此,因为大多数问题根本无法基于是非标准进行评估。具体而言,当认为存在一定容差时,仅对候选化学结构和预期化学结构进行严格比较是不够的。为克服这一限制,我们基于两个化学结构的成对相似性得分开发了一种评分工作流程。此工作流程作为一个Moodle插件实现,使用Chemdoodle引擎绘制结构并与REST服务器通信,以使用分子描述符计算相似性得分。该插件(https://github.com/Laboratoire-de-Chemoinformatique/moodle-qtype_molsimilarity)易于适应任何学术用户;嵌入和相似性度量均可配置。