Suppr超能文献

评估丙二醇甲醚作为一种潜在的挑战剂,用于使用傅里叶变换红外光谱法对密闭系统药物转移装置中的液体和顶空进行泄漏检测。

Evaluation of propylene glycol methyl ether as a potential challenge agent for leak detection of liquid and headspace from closed system drug transfer devices using Fourier transform infrared spectroscopy.

机构信息

University of Cincinnati Clermont College, Department of Science & Health, Batavia, OH 45103, USA.

Chemical and Biological Monitoring Branch, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH 45226, USA.

出版信息

Anal Methods. 2022 Nov 10;14(43):4393-4407. doi: 10.1039/d2ay01128j.

Abstract

Choosing an appropriate surrogate of hazardous drugs for use in testing Closed System Drug-Transfer Devices (CSTDs) is a challenging endeavor with many factors that must be considered. It was suggested that the compound propylene glycol methyl ether (PGME) may meet many of the criteria we considered important in a suitable surrogate. Criteria included sufficient volatility to evaporate from aqueous liquid leaks efficiently, a Henry's constant which produced sufficient vapor phase concentrations to make headspace leaks detectable, and suitability for detection using a low-cost detection system. We evaluated the measurement of vapors from solutions containing PGME released inside a closed chamber. We present data used to quantify limits of detection, limits of quantification, bias, precision, and accuracy of Fourier Transform Infrared Spectroscopy (FTIR) measurements of vapors from 2.5 M PGME solutions. The effects of ethanol as a component of the PGME solution were also evaluated. Liquid drops of PGME solutions and headspace vapors above PGME solutions were released to simulate leaks from CSTDs. Using a calibration apparatus, an instrumental limit of detection (LOD) of 0.25 ppmv and a limit of quantitation (LOQ) of 0.8 ppmv were determined for PGME vapor. A LOD of 1.1 μL and a LOQ of 3.5 μL were determined for liquid aliquots of 2.5 M PGME solution released in a closed chamber. Accurate quantitation of liquid leaks required complete evaporation of droplets. With the upper end of the useable quantitation range limited by slow evaporation of relatively large droplets and the lower end defined by the method LOQ, the method evaluated in this research had a narrow quantitative range for liquid droplets. Displacement of 45 mL of vial headspace containing PGME vapor is the largest amount expected when using the draft NIOSH testing protocol. Release of an unfiltered 45 mL headspace aliquot within the NIOSH chamber was calculated to produce a concentration of 0.8 ppmv based on the Henry's constant, which is right at the instrumental LOQ. Therefore, the sensitivity of the method was not adequate to determine leaks of PGME vapor from a headspace release through an air filtering CSTD when using the draft NIOSH testing protocols with an FTIR analyzer.

摘要

选择合适的危险药物替代品来测试密闭式药物传输装置(CSTD)是一项具有挑战性的工作,需要考虑许多因素。有人建议,化合物丙二醇甲醚(PGME)可能符合我们认为在合适替代品中重要的许多标准。这些标准包括:从水性液体泄漏中有效蒸发的足够挥发性、产生足够气相浓度以检测顶空泄漏的亨利常数,以及适合使用低成本检测系统进行检测。我们评估了在密闭室中释放 PGME 溶液后测量蒸气的方法。我们提供了用于量化检测限、定量限、偏差、精密度和准确性的数据,这些数据是使用傅里叶变换红外光谱(FTIR)测量 2.5 M PGME 溶液蒸气获得的。还评估了 PGME 溶液中乙醇作为其组成部分的影响。PGME 溶液的液滴和 PGME 溶液上方的顶空蒸气被释放以模拟 CSTD 的泄漏。使用校准装置,确定了 PGME 蒸气的仪器检测限(LOD)为 0.25 ppmv 和定量限(LOQ)为 0.8 ppmv。在密闭室中释放的 2.5 M PGME 溶液的液体等分试样的 LOD 为 1.1 μL,LOQ 为 3.5 μL。准确量化液体泄漏需要完全蒸发液滴。由于可定量范围的上限受相对较大液滴缓慢蒸发的限制,下限受方法 LOQ 的限制,因此本研究中评估的方法对于液体液滴的定量范围较窄。使用 NIOSH 测试方案时,预计最大的 PGME 蒸气置换量为 45 毫升小瓶瓶顶空间。根据亨利常数,在 NIOSH 腔室内释放未经过滤的 45 毫升顶空等分试样,预计会产生 0.8 ppmv 的浓度,这刚好处于仪器 LOD。因此,使用 draft NIOSH 测试方案和 FTIR 分析仪时,该方法的灵敏度不足以确定通过空气过滤 CSTD 从顶空释放的 PGME 蒸气泄漏。

相似文献

2
Performance testing protocol for closed-system transfer devices used during pharmacy compounding and administration of hazardous drugs.
PLoS One. 2018 Oct 31;13(10):e0205263. doi: 10.1371/journal.pone.0205263. eCollection 2018.
5
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
Zhonghua Jie He He Hu Xi Za Zhi. 2024 Feb 12;47(2):101-119. doi: 10.3760/cma.j.cn112147-20231019-00247.
6
Evaluating Six Commercially Available Closed-System Drug-Transfer Devices Against NIOSH's 2015 Draft Vapor Protocol.
Hosp Pharm. 2020 Dec;55(6):391-399. doi: 10.1177/0018578719848730. Epub 2019 Jun 6.
7
Evaluation of three barrier-type closed system transfer devices using the 2015 NIOSH vapor containment performance draft protocol.
Drugs Ther Perspect. 2022;38(4):177-184. doi: 10.1007/s40267-022-00905-x. Epub 2022 Mar 16.
9
10
Propylene glycol monomethyl ether occupational exposure. 3. Exposure of human volunteers.
Int Arch Occup Environ Health. 2002 Apr;75(4):203-8. doi: 10.1007/s00420-001-0310-4. Epub 2002 Feb 5.

本文引用的文献

2
Evaluation of three barrier-type closed system transfer devices using the 2015 NIOSH vapor containment performance draft protocol.
Drugs Ther Perspect. 2022;38(4):177-184. doi: 10.1007/s40267-022-00905-x. Epub 2022 Mar 16.
4
Validation of chemotherapy drug vapor containment of an air cleaning closed-system drug transfer device.
J Oncol Pharm Pract. 2022 Oct;28(7):1508-1515. doi: 10.1177/10781552211030682. Epub 2021 Jul 6.
5
An exploration of the impact of ethanol diluent on breath alcohol concentration in patients receiving paclitaxel chemotherapy.
Cancer Chemother Pharmacol. 2021 Aug;88(2):307-312. doi: 10.1007/s00280-021-04279-1. Epub 2021 May 4.
6
Evaluating Six Commercially Available Closed-System Drug-Transfer Devices Against NIOSH's 2015 Draft Vapor Protocol.
Hosp Pharm. 2020 Dec;55(6):391-399. doi: 10.1177/0018578719848730. Epub 2019 Jun 6.
7
Evaluation of Different Quality-Relevant Aspects of Closed System Transfer Devices (CSTDs).
Pharm Res. 2020 Apr 9;37(4):81. doi: 10.1007/s11095-020-02784-1.
8
A Different Kind of Relapse: Ethanol as an Additive in Chemotherapy Formulations.
Oncol Res Treat. 2019;42(6):350-353. doi: 10.1159/000497216. Epub 2019 Apr 17.
10
Performance testing protocol for closed-system transfer devices used during pharmacy compounding and administration of hazardous drugs.
PLoS One. 2018 Oct 31;13(10):e0205263. doi: 10.1371/journal.pone.0205263. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验