Suppr超能文献

从大气中生产节能水的途径。

Pathways to Energy-efficient Water Production from the Atmosphere.

机构信息

Research Center of Solar Power & Refrigeration, Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.

出版信息

Adv Sci (Weinh). 2022 Dec;9(36):e2204508. doi: 10.1002/advs.202204508. Epub 2022 Oct 26.

Abstract

Atmospheric water harvesting (AWH) provides a fascinating chance to facilitate a sustainable water supply, which obtains considerable attention recently. However, ignoring the energy efficiency of AWH leads to high energy consumption in current prototypes (ca. 10 to 10  MJ kg ), misfitting with the high-strung and complicated water-energy nexus. In this perspective, a robust evaluation of existing AWHs is conducted and a detailed way to high-efficiency AWH is paved. The results suggest that using cooling-assisted adsorption will weaken the bounds of climate to sorbent selections and have the potential to improve efficiency by more than 50%. For device design, the authors deeply elucidate how to perfect heat/mass transfer to narrow the gap between lab and practices. Reducing heat loss, recovering heat and structured sorbent are the main paths to improve efficiency on the device scale, which is more significant for a large-scale AWH. Besides efficiency, the techno-economic evaluation reveals that developing a cost-effective AWH is also crucial for sustainability, which can be contributed by green synthesis routes and biomass-based sorbents. These analyses provide a uniform platform to guide the next-generation AWH to mitigate the global water crisis.

摘要

大气水收集(AWH)提供了一个引人入胜的机会,可以促进可持续的供水,这在最近引起了相当多的关注。然而,忽视 AWH 的能源效率会导致当前原型的高能耗(约 10 到 10 兆焦耳/千克),与紧张复杂的水-能源关系不匹配。在这一观点中,对现有的 AWH 进行了稳健的评估,并为高效 AWH 铺平了道路。研究结果表明,使用冷却辅助吸附将削弱气候对吸附剂选择的限制,并有可能将效率提高 50%以上。对于设备设计,作者深入阐明了如何完善热/质量传递,以缩小实验室和实践之间的差距。减少热损失、回收热量和结构化吸附剂是提高设备规模效率的主要途径,这对大规模 AWH 更为重要。除了效率之外,技术经济评估还表明,开发具有成本效益的 AWH 对于可持续性也至关重要,这可以通过绿色合成路线和基于生物质的吸附剂来实现。这些分析为指导下一代 AWH 缓解全球水危机提供了一个统一的平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验