Badawi Sufian Abdul Qader, Takruri Maen, Albadawi Yaman, Khattak Muazzam A Khan, Nileshwar Ajay Kamath, Mosalam Emad
Department of Computing, School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.
Center for Information, Communication and Networking Education and Innovation (ICONET), American University of Ras Al Khaimah, Ras Al Khaimah 72603, United Arab Emirates.
J Imaging. 2022 Sep 22;8(10):258. doi: 10.3390/jimaging8100258.
Hypertensive retinopathy severity classification is proportionally related to tortuosity severity grading. No tortuosity severity scale enables a computer-aided system to classify the tortuosity severity of a retinal image. This work aimed to introduce a machine learning model that can identify the severity of a retinal image automatically and hence contribute to developing a hypertensive retinopathy or diabetic retinopathy automated grading system. First, the tortuosity is quantified using fourteen tortuosity measurement formulas for the retinal images of the AV-Classification dataset to create the tortuosity feature set. Secondly, a manual labeling is performed and reviewed by two ophthalmologists to construct a tortuosity severity ground truth grading for each image in the AV classification dataset. Finally, the feature set is used to train and validate the machine learning models (J48 decision tree, ensemble rotation forest, and distributed random forest). The best performance learned model is used as the tortuosity severity classifier to identify the tortuosity severity (normal, mild, moderate, and severe) for any given retinal image. The distributed random forest model has reported the highest accuracy (99.4%) compared to the J48 Decision tree model and the rotation forest model with minimal least root mean square error (0.0000192) and the least mean average error (0.0000182). The proposed tortuosity severity grading matched the ophthalmologist's judgment. Moreover, detecting the tortuosity severity of the retinal vessels', optimizing vessel segmentation, the vessel segment extraction, and the created feature set have increased the accuracy of the automatic tortuosity severity detection model.
高血压性视网膜病变严重程度分类与迂曲严重程度分级成比例相关。目前尚无迂曲严重程度量表能使计算机辅助系统对视网膜图像的迂曲严重程度进行分类。这项工作旨在引入一种机器学习模型,该模型能够自动识别视网膜图像的严重程度,从而有助于开发高血压性视网膜病变或糖尿病性视网膜病变自动分级系统。首先,使用针对AV-Classification数据集视网膜图像的14个迂曲测量公式对迂曲进行量化,以创建迂曲特征集。其次,由两位眼科医生进行手动标注并审核,为AV分类数据集中的每张图像构建迂曲严重程度的真实分级。最后,使用该特征集训练和验证机器学习模型(J48决策树、集成旋转森林和分布式随机森林)。性能最佳的学习模型用作迂曲严重程度分类器,以识别任何给定视网膜图像的迂曲严重程度(正常、轻度、中度和重度)。与J48决策树模型和旋转森林模型相比,分布式随机森林模型的准确率最高(99.4%),最小均方根误差最小(0.0000192),平均平均误差最小(0.0000182)。所提出的迂曲严重程度分级与眼科医生的判断相符。此外,检测视网膜血管的迂曲严重程度、优化血管分割、血管段提取以及创建的特征集提高了自动迂曲严重程度检测模型的准确性。