Suppr超能文献

基于动静脉比值和视盘水肿的混合决策支持系统,用于检测和分级高血压性视网膜病变。

Arteriovenous ratio and papilledema based hybrid decision support system for detection and grading of hypertensive retinopathy.

机构信息

Department of Computer Science, COMSATS Institute of Information Technology, Wah Cant., Pakistan.

Department of Computer Engineering, College of E&ME, National University of Sciences and Technology, Islamabad, Pakistan.

出版信息

Comput Methods Programs Biomed. 2018 Feb;154:123-141. doi: 10.1016/j.cmpb.2017.11.014. Epub 2017 Nov 15.

Abstract

BACKGROUND AND OBJECTIVES

Hypertensive Retinopathy (HR) is a retinal disease which happened due to consistent high blood pressure (hypertension). In this paper, an automated system is presented that detects the HR at various stages using arteriovenous ratio and papilledema signs through fundus retinal images.

METHODS

The proposed system consists of two modules i.e. vascular analysis for calculation of arteriovenous ratio and optic nerve head (ONH) region analysis for papilledema.  First module uses a set of hybrid features in Artery or Vein (A/V) classification using support vector machine (SVM) along with its radial basis function (RBF) kernel for arteriovenous ratio. In second module, proposed system performs analysis of ONH region for possible signs of papilledema. This stage utilizes different features along with SVM and RBF for classification of papilledema.

RESULTS

The first module of proposed method shows average accuracies of 95.10%, 95.64% and 98.09%for images of INSPIRE-AVR, VICAVR, and local dataset respectively. The second module of proposed method achieves average accuracies of 95.93% and 97.50% on STARE and local dataset respectively.

CONCLUSIONS

The system finally utilizes results from both modules to grade HR with good results. The presented system is a novel step towards automated detection and grading of HR disease and can be used as clinical decision support system.

摘要

背景与目的

高血压性视网膜病变(HR)是一种由于持续高血压(hypertension)而导致的视网膜疾病。本文提出了一种自动系统,通过眼底视网膜图像检测动静脉比和视盘水肿标志来检测不同阶段的 HR。

方法

该系统由两个模块组成,即血管分析模块用于计算动静脉比,视神经头(ONH)区域分析模块用于检测视盘水肿。第一个模块使用支持向量机(SVM)及其径向基函数(RBF)核的一组混合特征进行动脉或静脉(A/V)分类,用于计算动静脉比。在第二个模块中,系统对 ONH 区域进行分析,以寻找可能的视盘水肿迹象。该阶段利用不同的特征与 SVM 和 RBF 对 papilledema 进行分类。

结果

所提出方法的第一个模块在 INSPIRE-AVR、VICAVR 和本地数据集上的平均准确率分别为 95.10%、95.64%和 98.09%。所提出方法的第二个模块在 STARE 和本地数据集上的平均准确率分别为 95.93%和 97.50%。

结论

该系统最终利用两个模块的结果对 HR 进行分级,取得了良好的效果。所提出的系统是自动检测和分级 HR 疾病的新步骤,可以作为临床决策支持系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验