Department of Microbiology, Bose Institutegrid.418423.8, Kolkata, India.
Department of Biotechnology, University of North Bengal, Siliguri, India.
Microbiol Spectr. 2022 Dec 21;10(6):e0160622. doi: 10.1128/spectrum.01606-22. Epub 2022 Oct 26.
High temperature growth/survival was revealed in a phylogenetic relative (SMMA_5) of the mesophilic isolated from the 78 to 85°C water of a Trans-Himalayan sulfur-borax spring. After 12 h at 50°C, or 45 min at 70°C, in mineral salts thiosulfate (MST) medium, SMMA_5 retained ~2% colony forming units (CFUs), whereas comparator had 1.5% and 0% CFU left at 50°C and 70°C, respectively. After 12 h at 50°C, the thermally conditioned sibling SMMA_5_TC exhibited an ~1.5 time increase in CFU count; after 45 min at 70°C, SMMA_5_TC had 7% of the initial CFU count. 1,000-times diluted Reasoner's 2A medium, and MST supplemented with lithium, boron, or glycine-betaine, supported higher CFU-retention/CFU-growth than MST. Furthermore, with or without lithium/boron/glycine-betaine, a higher percentage of cells always remained metabolically active, compared with what percentage formed single colonies. SMMA_5, compared with other , contained 335 unique genes: of these, 186 encoded hypothetical proteins, and 83 belonged to orthology groups, which again corresponded mostly to DNA replication/recombination/repair, transcription, secondary metabolism, and inorganic ion transport/metabolism. The SMMA_5 genome was relatively enriched in cell wall/membrane/envelope biogenesis, and amino acid metabolism. SMMA_5 and SMMA_5_TC mutually possessed 43 nucleotide polymorphisms, of which 18 were in protein-coding genes with 13 nonsynonymous and seven radical amino acid replacements. Such biochemical and biophysical mechanisms could be involved in thermal stress mitigation which streamline the cells' energy and resources toward system-maintenance and macromolecule-stabilization, thereby relinquishing cell-division for cell-viability. Thermal conditioning apparently helped inherit those potential metabolic states which are crucial for cell-system maintenance, while environmental solutes augmented the indigenous stability-conferring mechanisms. For a holistic understanding of microbial life's high-temperature adaptation, it is imperative to explore the biology of the phylogenetic relatives of mesophilic bacteria which get stochastically introduced to geographically and geologically diverse hot spring systems by local geodynamic forces. Here, endurance of high heat up to the extent of growth under special (habitat-inspired) conditions was discovered in a hot-spring-dwelling phylogenetic relative of the mesophilic species. Thermal conditioning, extreme oligotrophy, metabolic deceleration, presence of certain habitat-specific inorganic/organic solutes, and potential genomic specializations were found to be the major enablers of this conditional (acquired) thermophilicity. Feasibility of such phenomena across the taxonomic spectrum can well be paradigm changing for the established scopes of microbial adaptation to the physicochemical extremes. Applications of conditional thermophilicity in microbial process biotechnology may be far reaching and multifaceted.
高温生长/存活能力在嗜热 的系统发育相关种(SMMA_5)中被揭示,该种来自于 Trans-Himalayan 硫磺硼酸盐温泉的 78 至 85°C 水域。在矿物盐硫代硫酸盐(MST)培养基中,50°C 下培养 12 小时,或 70°C 下培养 45 分钟后,SMMA_5 保留了约 2%的集落形成单位(CFU),而比较种在 50°C 和 70°C 下分别残留 1.5%和 0%的 CFU。在 50°C 下培养 12 小时后,热条件下的同胞 SMMA_5_TC 的 CFU 计数增加了约 1.5 倍;在 70°C 下培养 45 分钟后,SMMA_5_TC 保留了初始 CFU 计数的 7%。在 Reasoner 的 2A 培养基稀释 1000 倍,以及补充锂、硼或甘氨酸甜菜碱的 MST 中,支持更高的 CFU 保留/CFU 生长。此外,无论是否有锂/硼/甘氨酸甜菜碱,与形成单菌落的百分比相比,更多的细胞始终保持代谢活性。与其他 相比,SMMA_5 含有 335 个独特的基因:其中 186 个编码假设蛋白,83 个属于同源基因群,这些基因群主要对应于 DNA 复制/重组/修复、转录、次级代谢以及无机离子运输/代谢。SMMA_5 基因组相对富含细胞壁/膜/包膜生物发生和氨基酸代谢。SMMA_5 和 SMMA_5_TC 相互拥有 43 个核苷酸多态性,其中 18 个在蛋白质编码基因中,有 13 个是非同义突变和 7 个激进氨基酸取代。这些生化和生物物理机制可能参与热应激缓解,使细胞的能量和资源流向系统维护和大分子稳定,从而放弃细胞分裂以维持细胞活力。热条件处理显然有助于遗传这些对细胞系统维护至关重要的潜在代谢状态,而环境溶质则增强了本土赋予稳定性的机制。为了全面了解微生物在高温下的适应能力,探索嗜热细菌的系统发育亲属的生物学是至关重要的,这些细菌是由当地地球动力学力量随机引入到地理和地质上多样化的温泉系统中的。在温泉栖息地的嗜热 物种的系统发育相关种中,发现了在特殊(受栖息地启发的)条件下高达生长程度的高温耐受能力。热条件处理、极端寡营养、代谢减速、存在某些特定栖息地的无机/有机溶质以及潜在的基因组特化被发现是这种条件(获得)嗜热性的主要促成因素。这种现象在整个分类范围内的可行性可能会彻底改变微生物对物理化学极端条件的适应范围。条件嗜热性在微生物过程生物技术中的应用可能具有深远而多方面的意义。