Suppr超能文献

基于分解下降学习的全波形反演的经颅超声成像。

Transcranial Ultrasound Imaging With Decomposition Descent Learning-Based Full Waveform Inversion.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Dec;69(12):3297-3307. doi: 10.1109/TUFFC.2022.3217512. Epub 2022 Nov 24.

Abstract

Noninvasive brain diagnosis is extremely important because of its efficiency, low cost, and painless nature in the prediction of stroke, cerebral hemorrhage, and other brain research. At present, achieving full 3-D quantitative ultrasonic imaging of the human brain is a cutting-edge challenge due to the complex structures of the human brain and the strong scattering caused by the skulls. In this article, we achieved quantitative ultrasonic imaging of inside-brain anomalies with our proposed method, the decomposition descent learning-based full waveform inversion (DDL-FWI). The proposed method adopts a linear residual decomposing technique to greatly alleviate the computation burden in fast inversion tomography (FIT) with enhanced convergence guaranteed by residual functions. Testing results in both simulation and laboratory experiments demonstrated that our method can achieve high-quality quantitative imaging of brain soft tissues and skulls even starting from homogeneous water background in 2-D, and this method is capable of reconstructing both complex brain tissues and clots in 2-D and 3-D cases using either clean or noisy signals, with a robust 3-D clot resolution as small as 18 mm and 2-D reconstruction speed in 11.20 s. Combined with advanced ultrasonic hardware, DDL-FWI can be easily trained and used for brain imaging efficiently that frees patients from harmful influences from traditional imaging techniques, e.g., ionization radiations from X-ray computed tomography (CT).

摘要

非侵入性脑诊断因其在中风、脑出血等脑研究中的高效、低成本和无痛特性而非常重要。目前,由于人脑结构复杂和颅骨强烈散射,实现人脑的全 3-D 定量超声成像是一项前沿挑战。在本文中,我们提出了一种基于分解下降学习的全波形反演(DDL-FWI)方法,实现了脑内异常的定量超声成像。该方法采用线性残差分解技术,大大减轻了快速逆投影层析成像(FIT)的计算负担,并通过残差函数保证了增强的收敛性。在仿真和实验室实验中的测试结果表明,即使从二维均匀水背景开始,我们的方法也可以实现高质量的脑软组织和颅骨定量成像,并且该方法能够使用干净或嘈杂的信号重建二维和三维情况下的复杂脑组织和凝块,具有稳健的 3-D 凝块分辨率,小至 18 毫米,二维重建速度为 11.20 秒。结合先进的超声硬件,DDL-FWI 可以轻松训练和有效地用于脑成像,使患者免受传统成像技术(例如 X 射线计算机断层扫描(CT)的电离辐射)的有害影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验