School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai 519082, China.
School of Geodesy and Geomatics, Wuhan University, Wuhan, Hubei 430079, China; The Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University, Wuhan, Hubei 430079, China.
Sci Total Environ. 2023 Jan 20;857(Pt 3):159673. doi: 10.1016/j.scitotenv.2022.159673. Epub 2022 Oct 23.
The data incompleteness of aerosol optical depth (AOD) products and their lack of availability in highly urbanized areas limit their great potential of application in air quality research. In this study, we developed an ensemble machine-learning approach that integrated random forest-based Space Interpolation Model (SIM) and deep neural network-based Time Interpolation Model (TIM) to achieve high spatiotemporal resolution dataset of AOD. The spatial interpolation model first filled the spatial gaps in the Level-2 Himawari-8 hourly AOD product in 0.05° (∼5 km) spatial resolution, while the time interpolation model further improved the temporal resolution to 10 min on its basis. A full-coverage AOD dataset of Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) in 2020 was obtained as a practical implementation. The validation against in-situ AOD observations from AERONET and SONET indicated that this new dataset was satisfactory (R = 0.80), and especially in spring and summer. Overall, our ensemble machine-learning model provided an effective scheme for reconstruction of AOD with high spatiotemporal resolution of 0.05° and 10 min, which may further advance the near-real-time monitoring of air-quality in urban areas.
气溶胶光学厚度(AOD)产品数据的不完整性及其在高度城市化地区的不可用性限制了它们在空气质量研究中的巨大应用潜力。在本研究中,我们开发了一种集成基于随机森林的空间插值模型(SIM)和基于深度神经网络的时间插值模型(TIM)的集成机器学习方法,以实现 AOD 的高时空分辨率数据集。空间插值模型首先填补了 0.05°(约 5km)空间分辨率的 Level-2 Himawari-8 每小时 AOD 产品中的空间间隙,而时间插值模型在此基础上进一步将时间分辨率提高到 10 分钟。作为实际实施,我们获得了 2020 年北京-天津-河北(BTH)、长江三角洲(YRD)和珠江三角洲(PRD)的全覆盖 AOD 数据集。与 AERONET 和 SONET 的现场 AOD 观测值的验证表明,该新数据集令人满意(R = 0.80),特别是在春季和夏季。总体而言,我们的集成机器学习模型提供了一种有效的方案,可对 AOD 进行高时空分辨率(0.05°和 10 分钟)的重建,这可能进一步推进城市地区空气质量的近实时监测。