Suppr超能文献

多模态 AOD 与空气质量数据的协同数据融合用于近实时全覆盖空气污染评估。

Synergistic data fusion of multimodal AOD and air quality data for near real-time full coverage air pollution assessment.

机构信息

Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.

Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai, 202162, China.

出版信息

J Environ Manage. 2022 Jan 15;302(Pt B):114121. doi: 10.1016/j.jenvman.2021.114121. Epub 2021 Nov 19.

Abstract

Data gaps in satellite aerosol optical depth (AOD) retrievals pose a huge challenge in near real-time air quality assessment. Here, we present a multimodal aerosol data fusion approach to integrate multisource AOD and air quality data for the generation of full coverage AOD maps at hourly resolution. Specifically, data gaps in each Himawari-8 AOD snapshot were partially filled by merging all available daytime AOD snapshots, and these partially gap-filled AOD maps were then fused with coarse yet spatially complete numerical AOD simulations to generate full coverage AOD imageries. Ground-based air quality measurements, including concentrations of PM, PM, NO, and SO were simultaneously assimilated into gridded AOD fields to enhance the overall data accuracy. A practical implementation of the proposed method was illustrated by generating hourly full-coverage AOD maps in China from 2015 to 2020, and the validation results indicate this new AOD dataset agreed well with ground-based AOD measurements (R = 0.83), from which a ubiquitous AOD decreasing trend was revealed, especially during the noontime. Moreover, the hourly resolution and full-coverage advantages of this AOD dataset allow us to better assess spatiotemporal variations of PM and PM pollution that occurred in China. Overall, the proposed method paves a new way as big data analytics to advance regional air pollution assessment given the full coverage capacity and enhanced accuracy of the resulting AOD and PM concentration data.

摘要

卫星气溶胶光学厚度(AOD)反演中的数据空白给近实时空气质量评估带来了巨大挑战。在这里,我们提出了一种多模态气溶胶数据融合方法,用于生成每小时分辨率的全覆盖 AOD 地图。具体来说,通过合并所有可用的白天 AOD 快照,对每一个 Himawari-8 AOD 快照中的数据空白进行部分填补,然后将这些部分填补空白的 AOD 地图与粗但空间完整的数值 AOD 模拟进行融合,以生成全覆盖的 AOD 图像。同时,将地面空气质量测量值(包括 PM、PM、NO 和 SO 的浓度)同化到网格化 AOD 场中,以提高整体数据准确性。通过在中国生成 2015 年至 2020 年每小时全覆盖 AOD 地图的实际应用,验证了该方法的有效性,结果表明,这个新的 AOD 数据集与地面 AOD 测量值吻合良好(R=0.83),从中揭示了普遍存在的 AOD 下降趋势,特别是在中午。此外,这个 AOD 数据集的每小时分辨率和全覆盖优势使我们能够更好地评估中国发生的 PM 和 PM 污染的时空变化。总的来说,鉴于生成的 AOD 和 PM 浓度数据的全覆盖能力和增强的准确性,该方法为大数据分析推进区域空气污染评估开辟了新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验