Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio.
Department of Physiology and Biophysics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York.
J Am Soc Nephrol. 2023 Jan 1;34(1):40-54. doi: 10.1681/ASN.2022030289. Epub 2022 Oct 26.
Differentiating among HCO 3- , CO 3= , and H + movements across membranes has long seemed impossible. We now seek to discriminate unambiguously among three alternate mechanisms: the inward flux of 2 HCO 3- (mechanism 1), the inward flux of 1 CO 3= (mechanism 2), and the CO 2 /HCO 3- -stimulated outward flux of 2 H + (mechanism 3).
As a test case, we use electrophysiology and heterologous expression in Xenopus oocytes to examine SLC4 family members that appear to transport "bicarbonate" ("HCO 3- ").
First, we note that cell-surface carbonic anhydrase should catalyze the forward reaction CO 2 +OH - →HCO 3- if HCO 3- is the substrate; if it is not, the reverse reaction should occur. Monitoring changes in cell-surface pH ( Δ pH S ) with or without cell-surface carbonic anhydrase, we find that the presumed Cl-"HCO 3 " exchanger AE1 (SLC4A1) does indeed transport HCO 3- (mechanism 1) as long supposed, whereas the electrogenic Na/"HCO 3 " cotransporter NBCe1 (SLC4A4) and the electroneutral Na + -driven Cl-"HCO 3 " exchanger NDCBE (SLC4A8) do not. Second, we use mathematical simulations to show that each of the three mechanisms generates unique quantities of H + at the cell surface (measured as Δ pH S ) per charge transported (measured as change in membrane current, ΔIm ). Calibrating ΔpH S /Δ Im in oocytes expressing the H + channel H V 1, we find that our NBCe1 data align closely with predictions of CO 3= transport (mechanism 2), while ruling out HCO 3- (mechanism 1) and CO 2 /HCO 3- -stimulated H + transport (mechanism 3).
Our surface chemistry approach makes it possible for the first time to distinguish among HCO 3- , CO 3= , and H + fluxes, thereby providing insight into molecular actions of clinically relevant acid-base transporters and carbonic-anhydrase inhibitors.
长期以来,区分 HCO3- 、CO3= 和 H+ 通过膜的运动似乎是不可能的。我们现在试图明确区分三种替代机制:2HCO3- 的内向通量(机制 1)、1CO3= 的内向通量(机制 2)和 CO2/HCO3--刺激的 2H+外向通量(机制 3)。
作为一个测试案例,我们使用电生理学和 Xenopus 卵母细胞中的异源表达来检查似乎运输“重碳酸盐”(“HCO3-”)的 SLC4 家族成员。
首先,我们注意到,如果 HCO3-是底物,细胞表面碳酸酐酶应该催化 CO2+OH-→HCO3-的正向反应;如果不是,则应发生反向反应。监测有或没有细胞表面碳酸酐酶时细胞表面 pH(ΔpH S)的变化,我们发现假定的 Cl-“HCO3-”交换体 AE1(SLC4A1)确实如长期以来所假设的那样运输 HCO3-(机制 1),而电活性的 Na+/“HCO3-”共转运体 NBCe1(SLC4A4)和电中性的 Na+-驱动的 Cl-“HCO3-”交换体 NDCBE(SLC4A8)则不然。其次,我们使用数学模拟表明,三种机制中的每一种都会在细胞表面产生独特数量的 H+(以表面 pH 变化(ΔpH S)测量),每电荷转运(以膜电流变化(ΔIm)测量)。校准在表达 H+通道 HV1 的卵母细胞中ΔpH S/ΔIm,我们发现我们的 NBCe1 数据与 CO3=转运的预测非常吻合(机制 2),同时排除了 HCO3-(机制 1)和 CO2/HCO3--刺激的 H+转运(机制 3)。
我们的表面化学方法首次使区分 HCO3-、CO3= 和 H+通量成为可能,从而深入了解临床相关酸碱转运体和碳酸酐酶抑制剂的分子作用。