Suppr超能文献

内体中非经典β肾上腺素能激活 ERK。

Non-canonical β-adrenergic activation of ERK at endosomes.

机构信息

Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.

Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.

出版信息

Nature. 2022 Nov;611(7934):173-179. doi: 10.1038/s41586-022-05343-3. Epub 2022 Oct 26.

Abstract

G-protein-coupled receptors (GPCRs), the largest family of signalling receptors, as well as important drug targets, are known to activate extracellular-signal-regulated kinase (ERK)-a master regulator of cell proliferation and survival. However, the precise mechanisms that underlie GPCR-mediated ERK activation are not clearly understood. Here we investigated how spatially organized β-adrenergic receptor (βAR) signalling controls ERK. Using subcellularly targeted ERK activity biosensors, we show that βAR signalling induces ERK activity at endosomes, but not at the plasma membrane. This pool of ERK activity depends on active, endosome-localized Gα and requires ligand-stimulated βAR endocytosis. We further identify an endosomally localized non-canonical signalling axis comprising Gα, RAF and mitogen-activated protein kinase kinase, resulting in endosomal ERK activity that propagates into the nucleus. Selective inhibition of endosomal βAR and Gα signalling blunted nuclear ERK activity, MYC gene expression and cell proliferation. These results reveal a non-canonical mechanism for the spatial regulation of ERK through GPCR signalling and identify a functionally important endosomal signalling axis.

摘要

G 蛋白偶联受体(GPCRs)是信号转导受体中最大的家族,也是重要的药物靶点,已知其可激活细胞外信号调节激酶(ERK)——细胞增殖和存活的主要调节剂。然而,GPCR 介导的 ERK 激活的确切机制尚不清楚。在这里,我们研究了空间组织的β-肾上腺素能受体(βAR)信号如何控制 ERK。使用亚细胞靶向 ERK 活性生物传感器,我们表明βAR 信号在内涵体上诱导 ERK 活性,但不在质膜上。这种 ERK 活性依赖于活跃的、定位于内涵体的 Gα,并且需要配体刺激的βAR 内吞作用。我们进一步鉴定了一个包含 Gα、RAF 和丝裂原活化蛋白激酶激酶的内涵体局部非典型信号轴,导致内涵体 ERK 活性向核内传递。选择性抑制内涵体βAR 和 Gα 信号会削弱核 ERK 活性、MYC 基因表达和细胞增殖。这些结果揭示了通过 GPCR 信号对 ERK 进行空间调节的非典型机制,并鉴定了一个具有重要功能的内涵体信号轴。

相似文献

1
Non-canonical β-adrenergic activation of ERK at endosomes.
Nature. 2022 Nov;611(7934):173-179. doi: 10.1038/s41586-022-05343-3. Epub 2022 Oct 26.
2
Conformational biosensors reveal GPCR signalling from endosomes.
Nature. 2013 Mar 28;495(7442):534-8. doi: 10.1038/nature12000. Epub 2013 Mar 20.
3
Beta-arrestin2 enhances beta2-adrenergic receptor-mediated nuclear translocation of ERK.
Cell Signal. 2005 Oct;17(10):1248-53. doi: 10.1016/j.cellsig.2004.12.014. Epub 2005 Feb 12.
5
The beta1-adrenergic receptor mediates extracellular signal-regulated kinase activation via Galphas.
Amino Acids. 2010 Jan;38(1):75-84. doi: 10.1007/s00726-008-0207-6. Epub 2008 Nov 27.
6
beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor.
J Biol Chem. 2006 Jan 13;281(2):1261-73. doi: 10.1074/jbc.M506576200. Epub 2005 Nov 9.
7
GIV/Girdin activates Gαi and inhibits Gαs via the same motif.
Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):E5721-30. doi: 10.1073/pnas.1609502113. Epub 2016 Sep 12.
9
Endosomal Phosphatidylinositol 3-Kinase Is Essential for Canonical GPCR Signaling.
Mol Pharmacol. 2017 Jan;91(1):65-73. doi: 10.1124/mol.116.106252. Epub 2016 Nov 7.

引用本文的文献

1
GPCR endocytosis rewires neuronal gene expression and cellular architecture.
bioRxiv. 2025 Aug 27:2025.08.26.672159. doi: 10.1101/2025.08.26.672159.
3
Protease-Containing Nanobodies for Detecting and Manipulating Intracellular Antigens Using Antiviral Drugs.
ACS Chem Biol. 2025 Jun 20;20(6):1145-1152. doi: 10.1021/acschembio.5c00176. Epub 2025 May 12.
5
Intersection of GPCR trafficking and cAMP signaling at endomembranes.
J Cell Biol. 2025 Apr 7;224(4). doi: 10.1083/jcb.202409027. Epub 2025 Mar 25.
6
Unconventional receptor functions and location-biased signaling of the lactate GPCR in the nucleus.
Life Sci Alliance. 2025 Feb 4;8(4). doi: 10.26508/lsa.202503226. Print 2025 Apr.
8
Enhanced kinase translocation reporters for simultaneous real-time measurement of PKA, ERK, and calcium.
J Biol Chem. 2025 Mar;301(3):108183. doi: 10.1016/j.jbc.2025.108183. Epub 2025 Jan 13.
9
A massively parallel reporter assay library to screen short synthetic promoters in mammalian cells.
Nat Commun. 2024 Nov 28;15(1):10353. doi: 10.1038/s41467-024-54502-9.
10
Enhanced kinase translocation reporters for simultaneous real-time measurement of PKA, ERK, and Ca.
bioRxiv. 2024 Oct 2:2024.09.30.615856. doi: 10.1101/2024.09.30.615856.

本文引用的文献

1
A Highly Sensitive Fluorescent Akt Biosensor Reveals Lysosome-Selective Regulation of Lipid Second Messengers and Kinase Activity.
ACS Cent Sci. 2021 Dec 22;7(12):2009-2020. doi: 10.1021/acscentsci.1c00919. Epub 2021 Dec 3.
2
Spatial decoding of endosomal cAMP signals by a metastable cytoplasmic PKA network.
Nat Chem Biol. 2021 May;17(5):558-566. doi: 10.1038/s41589-021-00747-0. Epub 2021 Mar 1.
3
Noncanonical scaffolding of G and β-arrestin by G protein-coupled receptors.
Science. 2021 Mar 12;371(6534). doi: 10.1126/science.aay1833. Epub 2021 Jan 21.
4
G Protein-Coupled receptors and heterotrimeric G proteins as cancer drivers.
FEBS Lett. 2020 Dec;594(24):4201-4232. doi: 10.1002/1873-3468.14017.
5
Location-specific inhibition of Akt reveals regulation of mTORC1 activity in the nucleus.
Nat Commun. 2020 Nov 30;11(1):6088. doi: 10.1038/s41467-020-19937-w.
6
ERK signalling: a master regulator of cell behaviour, life and fate.
Nat Rev Mol Cell Biol. 2020 Oct;21(10):607-632. doi: 10.1038/s41580-020-0255-7. Epub 2020 Jun 23.
7
G protein-regulated endocytic trafficking of adenylyl cyclase type 9.
Elife. 2020 Jun 9;9:e58039. doi: 10.7554/eLife.58039.
9
SHOC2 complex-driven RAF dimerization selectively contributes to ERK pathway dynamics.
Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13330-13339. doi: 10.1073/pnas.1902658116. Epub 2019 Jun 18.
10
Illuminating the Onco-GPCRome: Novel G protein-coupled receptor-driven oncocrine networks and targets for cancer immunotherapy.
J Biol Chem. 2019 Jul 19;294(29):11062-11086. doi: 10.1074/jbc.REV119.005601. Epub 2019 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验