Suppr超能文献

通过可逆氧化调控逆转录病毒和SARS-CoV-2蛋白酶的二聚化及活性

Regulation of Retroviral and SARS-CoV-2 Protease Dimerization and Activity through Reversible Oxidation.

作者信息

Davis David A, Bulut Haydar, Shrestha Prabha, Mitsuya Hiroaki, Yarchoan Robert

机构信息

HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20814, USA.

出版信息

Antioxidants (Basel). 2022 Oct 18;11(10):2054. doi: 10.3390/antiox11102054.

Abstract

Most viruses encode their own proteases to carry out viral maturation and these often require dimerization for activity. Studies on human immunodeficiency virus type 1 (HIV-1), type 2 (HIV-2) and human T-cell leukemia virus (HTLV-1) proteases have shown that the activity of these proteases can be reversibly regulated by cysteine (Cys) glutathionylation and/or methionine oxidation (for HIV-2). These modifications lead to inhibition of protease dimerization and therefore loss of activity. These changes are reversible with the cellular enzymes, glutaredoxin or methionine sulfoxide reductase. Perhaps more importantly, as a result, the maturation of retroviral particles can also be regulated through reversible oxidation and this has been demonstrated for HIV-1, HIV-2, Mason-Pfizer monkey virus (M-PMV) and murine leukemia virus (MLV). More recently, our group has learned that SARS-CoV-2 main protease (M) dimerization and activity can also be regulated through reversible glutathionylation of Cys300. Overall, these studies reveal a conserved way for viruses to regulate viral polyprotein processing particularly during oxidative stress and reveal novel targets for the development of inhibitors of dimerization and activity of these important viral enzyme targets.

摘要

大多数病毒编码自身的蛋白酶以进行病毒成熟,而这些蛋白酶通常需要二聚化才能发挥活性。对1型人类免疫缺陷病毒(HIV-1)、2型(HIV-2)和人类T细胞白血病病毒(HTLV-1)蛋白酶的研究表明,这些蛋白酶的活性可通过半胱氨酸(Cys)谷胱甘肽化和/或甲硫氨酸氧化(针对HIV-2)进行可逆调节。这些修饰会导致蛋白酶二聚化受到抑制,从而失去活性。这些变化可被细胞内的谷氧还蛋白或甲硫氨酸亚砜还原酶逆转。也许更重要的是,结果显示逆转录病毒颗粒的成熟也可通过可逆氧化来调节,这已在HIV-1、HIV-2、马森- Pfizer猴病毒(M-PMV)和鼠白血病病毒(MLV)中得到证实。最近,我们的研究小组发现严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)主要蛋白酶(M)的二聚化和活性也可通过Cys300的可逆谷胱甘肽化来调节。总体而言,这些研究揭示了病毒调节病毒多聚蛋白加工的一种保守方式,特别是在氧化应激期间,并揭示了开发这些重要病毒酶靶点二聚化和活性抑制剂的新靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cc2/9598996/2e85387f2c67/antioxidants-11-02054-g001.jpg

相似文献

1
Regulation of Retroviral and SARS-CoV-2 Protease Dimerization and Activity through Reversible Oxidation.
Antioxidants (Basel). 2022 Oct 18;11(10):2054. doi: 10.3390/antiox11102054.
4
The role of the S-S bridge in retroviral protease function and virion maturation.
J Mol Biol. 2007 Feb 2;365(5):1493-504. doi: 10.1016/j.jmb.2006.11.005. Epub 2006 Nov 6.
9
Transcriptional Silencing of Moloney Murine Leukemia Virus in Human Embryonic Carcinoma Cells.
J Virol. 2016 Dec 16;91(1). doi: 10.1128/JVI.02075-16. Print 2017 Jan 1.
10
High-resolution structure of a retroviral protease folded as a monomer.
Acta Crystallogr D Biol Crystallogr. 2011 Nov;67(Pt 11):907-14. doi: 10.1107/S0907444911035943. Epub 2011 Oct 19.

引用本文的文献

1
1-L Transcription of SARS-CoV-2 Spike Protein S1 Subunit.
Int J Mol Sci. 2024 Apr 18;25(8):4440. doi: 10.3390/ijms25084440.
2
Glutathione and Glutaredoxin-Key Players in Cellular Redox Homeostasis and Signaling.
Antioxidants (Basel). 2023 Aug 3;12(8):1553. doi: 10.3390/antiox12081553.

本文引用的文献

1
Oxidative Stress in Chronic Hepatitis B-An Update.
Microorganisms. 2022 Jun 21;10(7):1265. doi: 10.3390/microorganisms10071265.
3
Surface cysteines could protect the SARS-CoV-2 main protease from oxidative damage.
J Inorg Biochem. 2022 Sep;234:111886. doi: 10.1016/j.jinorgbio.2022.111886. Epub 2022 Jun 2.
5
Allosteric inhibition of SARS-CoV-2 3CL protease by colloidal bismuth subcitrate.
Chem Sci. 2021 Sep 24;12(42):14098-14102. doi: 10.1039/d1sc03526f. eCollection 2021 Nov 3.
7
Identification and Quantification of Glutathionylated Cysteines under Ischemic Stress.
J Proteome Res. 2021 Sep 3;20(9):4529-4542. doi: 10.1021/acs.jproteome.1c00473. Epub 2021 Aug 12.
8
X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease.
Science. 2021 May 7;372(6542):642-646. doi: 10.1126/science.abf7945. Epub 2021 Apr 2.
9
Role of Glutaredoxin-1 and Glutathionylation in Cardiovascular Diseases.
Int J Mol Sci. 2020 Sep 16;21(18):6803. doi: 10.3390/ijms21186803.
10
Redox Regulation Glutaredoxin-1 and Protein -Glutathionylation.
Antioxid Redox Signal. 2020 Apr 1;32(10):677-700. doi: 10.1089/ars.2019.7963. Epub 2020 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验