Suppr超能文献

在缺血应激下鉴定和定量谷胱甘肽化半胱氨酸。

Identification and Quantification of Glutathionylated Cysteines under Ischemic Stress.

机构信息

Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States.

出版信息

J Proteome Res. 2021 Sep 3;20(9):4529-4542. doi: 10.1021/acs.jproteome.1c00473. Epub 2021 Aug 12.

Abstract

Ischemia reperfusion injury contributes to adverse cardiovascular diseases in part by producing a burst of reactive oxygen species that induce oxidations of many muscular proteins. Glutathionylation is one of the major protein cysteine oxidations that often serve as molecular mechanisms behind the pathophysiology associated with ischemic stress. Despite the biological significance of glutathionylation in ischemia reperfusion, identification of specific glutathionylated cysteines under ischemic stress has been limited. In this report, we have analyzed glutathionylation under oxygen-glucose deprivation (OGD) or repletion of nutrients after OGD (OGD/R) by using a clickable glutathione approach that specifically detects glutathionylated proteins. Our data find that palmitate availability induces a global level of glutathionylation and decreases cell viability during OGD/R. We have then applied a clickable glutathione-based proteomic quantification strategy, which enabled the identification and quantification of 249 glutathionylated cysteines in response to palmitate during OGD/R in the HL-1 cardiomyocyte cell line. The subsequent bioinformatic analysis found 18 glutathionylated cysteines whose genetic variants are associated with muscular disorders. Overall, our data report glutathionylated cysteines under ischemic stress that may contribute to adverse outcomes or muscular disorders.

摘要

缺血再灌注损伤通过产生大量活性氧簇(ROS)而导致不良心血管疾病,这些 ROS 会氧化许多肌肉蛋白。谷胱甘肽化是主要的蛋白质半胱氨酸氧化之一,常作为与缺血应激相关的病理生理学背后的分子机制。尽管谷胱甘肽化在缺血再灌注中具有重要的生物学意义,但在缺血应激下鉴定特定的谷胱甘肽化半胱氨酸仍受到限制。在本报告中,我们使用一种可点击的谷胱甘肽方法,通过分析在氧葡萄糖剥夺(OGD)或 OGD 后再补充营养物质(OGD/R)下的谷胱甘肽化,该方法可特异性检测谷胱甘肽化蛋白。我们的数据发现,棕榈酸可用性在 OGD/R 期间诱导了整体水平的谷胱甘肽化并降低了细胞活力。然后,我们应用了一种基于可点击谷胱甘肽的蛋白质组学定量策略,该策略可鉴定和定量 HL-1 心肌细胞系在 OGD/R 期间响应棕榈酸时的 249 个谷胱甘肽化半胱氨酸。随后的生物信息学分析发现了 18 个谷胱甘肽化半胱氨酸,其遗传变异与肌肉疾病有关。总的来说,我们的数据报告了在缺血应激下的谷胱甘肽化半胱氨酸,这些半胱氨酸可能导致不良后果或肌肉疾病。

相似文献

1
Identification and Quantification of Glutathionylated Cysteines under Ischemic Stress.
J Proteome Res. 2021 Sep 3;20(9):4529-4542. doi: 10.1021/acs.jproteome.1c00473. Epub 2021 Aug 12.
2
Clickable Glutathione-Based Identification of Cysteine Glutathionylation.
Curr Protoc. 2023 Oct;3(10):e907. doi: 10.1002/cpz1.907.
3
Proteomic Identification of Protein Glutathionylation in Cardiomyocytes.
J Proteome Res. 2019 Apr 5;18(4):1806-1818. doi: 10.1021/acs.jproteome.8b00986. Epub 2019 Mar 11.
4
Isotopically Labeled Clickable Glutathione to Quantify Protein S-Glutathionylation.
Chembiochem. 2020 Mar 16;21(6):853-859. doi: 10.1002/cbic.201900528. Epub 2019 Oct 29.
5
A novel approach for predicting protein S-glutathionylation.
BMC Bioinformatics. 2020 Sep 14;21(Suppl 11):282. doi: 10.1186/s12859-020-03571-w.
6
Chemoproteomic strategy identified p120-catenin glutathionylation regulates E-cadherin degradation and cell migration.
Cell Chem Biol. 2023 Dec 21;30(12):1542-1556.e9. doi: 10.1016/j.chembiol.2023.08.004. Epub 2023 Sep 14.
7
Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling.
Free Radic Biol Med. 2014 Feb;67:460-70. doi: 10.1016/j.freeradbiomed.2013.12.004. Epub 2013 Dec 11.
8
Prediction of glutathionylation sites in proteins using minimal sequence information and their experimental validation.
Free Radic Res. 2016 Sep;50(9):1011-21. doi: 10.1080/10715762.2016.1216551. Epub 2016 Aug 22.
10
Clickable glutathione using tetrazine-alkene bioorthogonal chemistry for detecting protein glutathionylation.
Org Biomol Chem. 2016 Nov 22;14(46):10886-10893. doi: 10.1039/c6ob02050j.

引用本文的文献

2
Protein phosphatase PP2Cα S-glutathionylation regulates cell migration.
J Biol Chem. 2024 Oct;300(10):107784. doi: 10.1016/j.jbc.2024.107784. Epub 2024 Sep 18.
3
Clickable Glutathione-Based Identification of Cysteine Glutathionylation.
Curr Protoc. 2023 Oct;3(10):e907. doi: 10.1002/cpz1.907.
5
Chemoproteomic strategy identified p120-catenin glutathionylation regulates E-cadherin degradation and cell migration.
Cell Chem Biol. 2023 Dec 21;30(12):1542-1556.e9. doi: 10.1016/j.chembiol.2023.08.004. Epub 2023 Sep 14.
6
Regulation of Retroviral and SARS-CoV-2 Protease Dimerization and Activity through Reversible Oxidation.
Antioxidants (Basel). 2022 Oct 18;11(10):2054. doi: 10.3390/antiox11102054.
7
Emerging chemistry and biology in protein glutathionylation.
Curr Opin Chem Biol. 2022 Dec;71:102221. doi: 10.1016/j.cbpa.2022.102221. Epub 2022 Oct 9.
8
Human Umbilical Vein Endothelial Cells Survive on the Ischemic TCA Cycle under Lethal Ischemic Conditions.
J Proteome Res. 2022 Oct 7;21(10):2385-2396. doi: 10.1021/acs.jproteome.2c00255. Epub 2022 Sep 8.

本文引用的文献

1
Glucose as a Major Antioxidant: When, What for and Why It Fails?
Antioxidants (Basel). 2020 Feb 5;9(2):140. doi: 10.3390/antiox9020140.
2
Isotopically Labeled Clickable Glutathione to Quantify Protein S-Glutathionylation.
Chembiochem. 2020 Mar 16;21(6):853-859. doi: 10.1002/cbic.201900528. Epub 2019 Oct 29.
3
Proteomic Identification of Protein Glutathionylation in Cardiomyocytes.
J Proteome Res. 2019 Apr 5;18(4):1806-1818. doi: 10.1021/acs.jproteome.8b00986. Epub 2019 Mar 11.
4
Vimentin disruption by lipoxidation and electrophiles: Role of the cysteine residue and filament dynamics.
Redox Biol. 2019 May;23:101098. doi: 10.1016/j.redox.2019.101098. Epub 2019 Jan 8.
5
SMYD2 glutathionylation contributes to degradation of sarcomeric proteins.
Nat Commun. 2018 Oct 18;9(1):4341. doi: 10.1038/s41467-018-06786-x.
6
Overview of the Muscle Cytoskeleton.
Compr Physiol. 2017 Jun 18;7(3):891-944. doi: 10.1002/cphy.c160033.
7
The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible.
Nucleic Acids Res. 2017 Jan 4;45(D1):D362-D368. doi: 10.1093/nar/gkw937. Epub 2016 Oct 18.
8
Connecting Sarcomere Protein Mutations to Pathogenesis in Cardiomyopathies: The Development of "Disease in a Dish" Models.
Front Physiol. 2016 Nov 22;7:566. doi: 10.3389/fphys.2016.00566. eCollection 2016.
10
Breaking BAG: The Co-Chaperone BAG3 in Health and Disease.
Trends Pharmacol Sci. 2016 Aug;37(8):672-688. doi: 10.1016/j.tips.2016.04.007. Epub 2016 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验