Hu Wei, Wu Bingxing, Srivastava Soumya K, Ay Suat Utku
Thermo Fisher Scientific, Jinke Road 2537, Pudong District, Shanghai 201206, China.
Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506-6102, USA.
Micromachines (Basel). 2022 Sep 30;13(10):1654. doi: 10.3390/mi13101654.
Microfluidics provides an indispensable platform for combining analytical operations such as sample preparation, mixing, separation/enrichment, and detection onto a single compact platform, defined as a lab-on-a-chip (LOC) device with applicability in biomedical and life science applications. Due to its ease of integration, 1D interdigital capacitive (IDC) sensors have been used in microfluidic platforms to detect particles of interest. This paper presents a comparative study on the use of capacitive sensors for microfluidic devices to detect bioparticles, more specifically red blood cells (RBCs). The detection sensitivities of 1D, 2D, and 3D capacitive sensors were determined by simulation using COMSOL Multiphysics v5.5. A water-filled 25 μm × 25 μm PDMS microfluidic channel was used with different sizes (5-10 μm) of red blood cells passing across the capacitive sensor regions. The conformal mapping was used for translating the 1D IDC sensor dimensions into equivalent 2D/3D parallel plate capacitance (PPC) sensor dimensions, creating similar absolute sensor capacitance. The detection sensitivity of each capacitive sensor is determined, and a new 3D PPC sensor structure was proposed to improve the sensitivity for high-resolution RBC detection in microfluidic channels. Proposed 2D and 3D sensors provide a 3× to 20× improvement in sensitivity compared to the standard 1D IDC structures, achieving a 100 aF capacitance difference when a healthy RBC passes in the structure.
微流控技术为将诸如样品制备、混合、分离/富集和检测等分析操作整合到一个紧凑的单一平台提供了不可或缺的平台,该平台被定义为芯片实验室(LOC)设备,在生物医学和生命科学应用中具有适用性。由于一维叉指电容(IDC)传感器易于集成,已被用于微流控平台来检测感兴趣的颗粒。本文对用于微流控设备检测生物颗粒(更具体地说是红细胞(RBC))的电容式传感器进行了比较研究。使用COMSOL Multiphysics v5.5通过模拟确定了一维、二维和三维电容式传感器的检测灵敏度。使用一个充满水的25μm×25μm的聚二甲基硅氧烷(PDMS)微流控通道,不同尺寸(5 - 10μm)的红细胞穿过电容式传感器区域。共形映射用于将一维IDC传感器尺寸转换为等效的二维/三维平行板电容(PPC)传感器尺寸,从而创建相似的绝对传感器电容。确定了每个电容式传感器的检测灵敏度,并提出了一种新的三维PPC传感器结构,以提高微流控通道中高分辨率红细胞检测的灵敏度。所提出的二维和三维传感器与标准的一维IDC结构相比,灵敏度提高了3倍至20倍,当一个健康的红细胞在该结构中通过时,实现了100 aF的电容差。