Suppr超能文献

利用图卷积网络预测贝沙罗汀共晶体并改善其生物利用度

Cocrystal Prediction of Bexarotene by Graph Convolution Network and Bioavailability Improvement.

作者信息

Xiao Fu, Cheng Yinxiang, Wang Jian-Rong, Wang Dingyan, Zhang Yuanyuan, Chen Kaixian, Mei Xuefeng, Luo Xiaomin

机构信息

State Key Laboratory of Drug Research and Drug Discovery and Design Center, Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.

出版信息

Pharmaceutics. 2022 Oct 16;14(10):2198. doi: 10.3390/pharmaceutics14102198.

Abstract

Bexarotene (BEX) was approved by the FDA in 1999 for the treatment of cutaneous T-cell lymphoma (CTCL). The poor aqueous solubility causes the low bioavailability of the drug and thereby limits the clinical application. In this study, we developed a GCN-based deep learning model (CocrystalGCN) for in-silico screening of the cocrystals of BEX. The results show that our model obtained high performance relative to baseline models. The top 30 of 109 coformer candidates were scored by CocrystalGCN and then validated experimentally. Finally, cocrystals of BEX-pyrazine, BEX-2,5-dimethylpyrazine, BEX-methyl isonicotinate, and BEX-ethyl isonicotinate were successfully obtained. The crystal structures were determined by single-crystal X-ray diffraction. Powder X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis were utilized to characterize these multi-component forms. All cocrystals present superior solubility and dissolution over the parent drug. The pharmacokinetic studies show that the plasma exposures (AUC) of BEX-pyrazine and BEX-2,5-dimethylpyrazine are 1.7 and 1.8 times that of the commercially available BEX powder, respectively. This work sets a good example for integrating virtual prediction and experimental screening to discover the new cocrystals of water-insoluble drugs.

摘要

贝沙罗汀(BEX)于1999年获美国食品药品监督管理局(FDA)批准用于治疗皮肤T细胞淋巴瘤(CTCL)。其水溶性差导致药物生物利用度低,从而限制了临床应用。在本研究中,我们开发了一种基于图卷积网络(GCN)的深度学习模型(共晶GCN),用于对BEX的共晶进行计算机辅助筛选。结果表明,相对于基线模型,我们的模型具有高性能。共晶GCN对109种共形成物候选物中的前30种进行了评分,然后进行实验验证。最终,成功获得了BEX-吡嗪、BEX-2,5-二甲基吡嗪、BEX-甲基异烟酸酯和BEX-乙基异烟酸酯的共晶。通过单晶X射线衍射确定了晶体结构。利用粉末X射线衍射、差示扫描量热法和热重分析对这些多组分形式进行了表征。所有共晶的溶解度和溶出度均优于母体药物。药代动力学研究表明,BEX-吡嗪和BEX-2,5-二甲基吡嗪的血浆暴露量(AUC)分别是市售BEX粉末的1.7倍和1.8倍。这项工作为整合虚拟预测和实验筛选以发现水不溶性药物的新共晶树立了一个很好的榜样。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9079/9611166/cee74cb1425e/pharmaceutics-14-02198-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验