Suppr超能文献

一种用于 SSVEP 识别的自适应任务相关成分分析方法。

An Adaptive Task-Related Component Analysis Method for SSVEP Recognition.

机构信息

Information Technologies Institute, Centre for Research and Technology Hellas, Thermi-Thessaloniki, 57001 Thessaloniki, Greece.

出版信息

Sensors (Basel). 2022 Oct 11;22(20):7715. doi: 10.3390/s22207715.

Abstract

Steady-State Visual Evoked Potential (SSVEP) recognition methods use a subject's calibration data to differentiate between brain responses, hence, providing the SSVEP-based brain-computer interfaces (BCIs) with high performance. However, they require sufficient calibration EEG trials to achieve that. This study develops a new method to learn from limited calibration EEG trials, and it proposes and evaluates a novel adaptive data-driven spatial filtering approach for enhancing SSVEP detection. The spatial filter learned from each stimulus utilizes temporal information from the corresponding EEG trials. To introduce the temporal information into the overall procedure, a multitask learning approach, based on the Bayesian framework, is adopted. The performance of the proposed method was evaluated into two publicly available benchmark datasets, and the results demonstrated that our method outperformed competing methods by a significant margin.

摘要

稳态视觉诱发电位 (SSVEP) 识别方法使用受试者的校准数据来区分大脑反应,从而为基于 SSVEP 的脑机接口 (BCI) 提供高性能。然而,它们需要足够数量的校准 EEG 试验来实现这一点。本研究开发了一种从有限的校准 EEG 试验中学习的新方法,并提出和评估了一种新颖的自适应数据驱动空间滤波方法,用于增强 SSVEP 检测。从每个刺激中学习到的空间滤波器利用了相应 EEG 试验中的时间信息。为了将时间信息引入整个过程,采用了基于贝叶斯框架的多任务学习方法。所提出方法的性能在两个公开可用的基准数据集上进行了评估,结果表明,我们的方法显著优于竞争方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b86e/9607074/158826e3461e/sensors-22-07715-g001.jpg

相似文献

1
An Adaptive Task-Related Component Analysis Method for SSVEP Recognition.
Sensors (Basel). 2022 Oct 11;22(20):7715. doi: 10.3390/s22207715.
2
Improving the Performance of Individually Calibrated SSVEP-BCI by Task- Discriminant Component Analysis.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:1998-2007. doi: 10.1109/TNSRE.2021.3114340. Epub 2021 Oct 1.
3
Almost free of calibration for SSVEP-based brain-computer interfaces.
J Neural Eng. 2023 Nov 22;20(6). doi: 10.1088/1741-2552/ad0b8f.
4
Inter- and Intra-Subject Transfer Reduces Calibration Effort for High-Speed SSVEP-Based BCIs.
IEEE Trans Neural Syst Rehabil Eng. 2020 Oct;28(10):2123-2135. doi: 10.1109/TNSRE.2020.3019276. Epub 2020 Aug 25.
5
An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
Int J Neural Syst. 2015 Nov;25(7):1550030. doi: 10.1142/S0129065715500306. Epub 2015 Jul 5.
6
Data Augmentation of SSVEPs Using Source Aliasing Matrix Estimation for Brain-Computer Interfaces.
IEEE Trans Biomed Eng. 2023 Jun;70(6):1775-1785. doi: 10.1109/TBME.2022.3227036. Epub 2023 May 19.
7
Online Adaptation Boosts SSVEP-Based BCI Performance.
IEEE Trans Biomed Eng. 2022 Jun;69(6):2018-2028. doi: 10.1109/TBME.2021.3133594. Epub 2022 May 19.
8
Spatial Filtering in SSVEP-Based BCIs: Unified Framework and New Improvements.
IEEE Trans Biomed Eng. 2020 Nov;67(11):3057-3072. doi: 10.1109/TBME.2020.2975552. Epub 2020 Feb 21.
9
Cross-Subject Transfer Method Based on Domain Generalization for Facilitating Calibration of SSVEP-Based BCIs.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:3307-3319. doi: 10.1109/TNSRE.2023.3305202. Epub 2023 Aug 21.
10
Enhancing SSVEP Identification With Less Individual Calibration Data Using Periodically Repeated Component Analysis.
IEEE Trans Biomed Eng. 2024 Apr;71(4):1319-1331. doi: 10.1109/TBME.2023.3333435. Epub 2024 Mar 20.

引用本文的文献

1
A novel hybrid method based on task-related component and canonical correlation analyses (H-TRCCA) for enhancing SSVEP recognition.
Front Neurosci. 2025 Apr 25;19:1544452. doi: 10.3389/fnins.2025.1544452. eCollection 2025.
2
SSVEP unsupervised adaptive feature recognition method based on self-similarity of same-frequency signals.
Front Neurosci. 2023 Aug 1;17:1161511. doi: 10.3389/fnins.2023.1161511. eCollection 2023.
3
5
Human Recognition Using Deep Neural Networks and Spatial Patterns of SSVEP Signals.
Sensors (Basel). 2023 Feb 22;23(5):2425. doi: 10.3390/s23052425.

本文引用的文献

1
Unlocking the Subconscious Consumer Bias: A Survey on the Past, Present, and Future of Hybrid EEG Schemes in Neuromarketing.
Front Neuroergon. 2021 May 17;2:672982. doi: 10.3389/fnrgo.2021.672982. eCollection 2021.
2
2020 International brain-computer interface competition: A review.
Front Hum Neurosci. 2022 Jul 22;16:898300. doi: 10.3389/fnhum.2022.898300. eCollection 2022.
4
Robust Similarity Measurement Based on a Novel Time Filter for SSVEPs Detection.
IEEE Trans Neural Netw Learn Syst. 2023 Aug;34(8):4096-4105. doi: 10.1109/TNNLS.2021.3118468. Epub 2023 Aug 4.
5
Improving the Performance of Individually Calibrated SSVEP-BCI by Task- Discriminant Component Analysis.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:1998-2007. doi: 10.1109/TNSRE.2021.3114340. Epub 2021 Oct 1.
6
Simultaneous Eye Blink Characterization and Elimination From Low-Channel Prefrontal EEG Signals Enhances Driver Drowsiness Detection.
IEEE J Biomed Health Inform. 2022 Mar;26(3):1001-1012. doi: 10.1109/JBHI.2021.3096984. Epub 2022 Mar 7.
7
A dataset of EEG signals from a single-channel SSVEP-based brain computer interface.
Data Brief. 2021 Feb 2;35:106826. doi: 10.1016/j.dib.2021.106826. eCollection 2021 Apr.
8
An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces.
Sensors (Basel). 2021 Feb 10;21(4):1256. doi: 10.3390/s21041256.
9
Spatial Filtering in SSVEP-Based BCIs: Unified Framework and New Improvements.
IEEE Trans Biomed Eng. 2020 Nov;67(11):3057-3072. doi: 10.1109/TBME.2020.2975552. Epub 2020 Feb 21.
10
Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs.
J Neural Eng. 2020 Jan 6;17(1):016026. doi: 10.1088/1741-2552/ab2373.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验