Information Technologies Institute, Centre for Research and Technology Hellas, Thermi-Thessaloniki, 57001 Thessaloniki, Greece.
Sensors (Basel). 2022 Oct 11;22(20):7715. doi: 10.3390/s22207715.
Steady-State Visual Evoked Potential (SSVEP) recognition methods use a subject's calibration data to differentiate between brain responses, hence, providing the SSVEP-based brain-computer interfaces (BCIs) with high performance. However, they require sufficient calibration EEG trials to achieve that. This study develops a new method to learn from limited calibration EEG trials, and it proposes and evaluates a novel adaptive data-driven spatial filtering approach for enhancing SSVEP detection. The spatial filter learned from each stimulus utilizes temporal information from the corresponding EEG trials. To introduce the temporal information into the overall procedure, a multitask learning approach, based on the Bayesian framework, is adopted. The performance of the proposed method was evaluated into two publicly available benchmark datasets, and the results demonstrated that our method outperformed competing methods by a significant margin.
稳态视觉诱发电位 (SSVEP) 识别方法使用受试者的校准数据来区分大脑反应,从而为基于 SSVEP 的脑机接口 (BCI) 提供高性能。然而,它们需要足够数量的校准 EEG 试验来实现这一点。本研究开发了一种从有限的校准 EEG 试验中学习的新方法,并提出和评估了一种新颖的自适应数据驱动空间滤波方法,用于增强 SSVEP 检测。从每个刺激中学习到的空间滤波器利用了相应 EEG 试验中的时间信息。为了将时间信息引入整个过程,采用了基于贝叶斯框架的多任务学习方法。所提出方法的性能在两个公开可用的基准数据集上进行了评估,结果表明,我们的方法显著优于竞争方法。