Suppr超能文献

一种用于 SSVEP 识别的自适应任务相关成分分析方法。

An Adaptive Task-Related Component Analysis Method for SSVEP Recognition.

机构信息

Information Technologies Institute, Centre for Research and Technology Hellas, Thermi-Thessaloniki, 57001 Thessaloniki, Greece.

出版信息

Sensors (Basel). 2022 Oct 11;22(20):7715. doi: 10.3390/s22207715.

Abstract

Steady-State Visual Evoked Potential (SSVEP) recognition methods use a subject's calibration data to differentiate between brain responses, hence, providing the SSVEP-based brain-computer interfaces (BCIs) with high performance. However, they require sufficient calibration EEG trials to achieve that. This study develops a new method to learn from limited calibration EEG trials, and it proposes and evaluates a novel adaptive data-driven spatial filtering approach for enhancing SSVEP detection. The spatial filter learned from each stimulus utilizes temporal information from the corresponding EEG trials. To introduce the temporal information into the overall procedure, a multitask learning approach, based on the Bayesian framework, is adopted. The performance of the proposed method was evaluated into two publicly available benchmark datasets, and the results demonstrated that our method outperformed competing methods by a significant margin.

摘要

稳态视觉诱发电位 (SSVEP) 识别方法使用受试者的校准数据来区分大脑反应,从而为基于 SSVEP 的脑机接口 (BCI) 提供高性能。然而,它们需要足够数量的校准 EEG 试验来实现这一点。本研究开发了一种从有限的校准 EEG 试验中学习的新方法,并提出和评估了一种新颖的自适应数据驱动空间滤波方法,用于增强 SSVEP 检测。从每个刺激中学习到的空间滤波器利用了相应 EEG 试验中的时间信息。为了将时间信息引入整个过程,采用了基于贝叶斯框架的多任务学习方法。所提出方法的性能在两个公开可用的基准数据集上进行了评估,结果表明,我们的方法显著优于竞争方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b86e/9607074/158826e3461e/sensors-22-07715-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验