Suppr超能文献

利用具有可解释性人工智能的各种深度学习模型进行儿童情绪识别。

Kids' Emotion Recognition Using Various Deep-Learning Models with Explainable AI.

机构信息

Symbiosis Centre for Applied Artificial Intelligence (SCAAI), Symbiosis International University (Deemed University), Pune 412115, India.

Computer Science and Information Technology Department, Symbiosis Institute of Technology, Symbiosis International University (Deemed University), Pune 412115, India.

出版信息

Sensors (Basel). 2022 Oct 21;22(20):8066. doi: 10.3390/s22208066.

Abstract

Human ideas and sentiments are mirrored in facial expressions. They give the spectator a plethora of social cues, such as the viewer's focus of attention, intention, motivation, and mood, which can help develop better interactive solutions in online platforms. This could be helpful for children while teaching them, which could help in cultivating a better interactive connect between teachers and students, since there is an increasing trend toward the online education platform due to the COVID-19 pandemic. To solve this, the authors proposed kids' emotion recognition based on visual cues in this research with a justified reasoning model of explainable AI. The authors used two datasets to work on this problem; the first is the LIRIS Children Spontaneous Facial Expression Video Database, and the second is an author-created novel dataset of emotions displayed by children aged 7 to 10. The authors identified that the LIRIS dataset has achieved only 75% accuracy, and no study has worked further on this dataset in which the authors have achieved the highest accuracy of 89.31% and, in the authors' dataset, an accuracy of 90.98%. The authors also realized that the face construction of children and adults is different, and the way children show emotions is very different and does not always follow the same way of facial expression for a specific emotion as compared with adults. Hence, the authors used 3D 468 landmark points and created two separate versions of the dataset from the original selected datasets, which are LIRIS-Mesh and Authors-Mesh. In total, all four types of datasets were used, namely LIRIS, the authors' dataset, LIRIS-Mesh, and Authors-Mesh, and a comparative analysis was performed by using seven different CNN models. The authors not only compared all dataset types used on different CNN models but also explained for every type of CNN used on every specific dataset type how test images are perceived by the deep-learning models by using explainable artificial intelligence (XAI), which helps in localizing features contributing to particular emotions. The authors used three methods of XAI, namely Grad-CAM, Grad-CAM++, and SoftGrad, which help users further establish the appropriate reason for emotion detection by knowing the contribution of its features in it.

摘要

人的思想和情感反映在面部表情中。它们为观察者提供了大量的社交线索,例如观察者的注意力焦点、意图、动机和情绪,这有助于在在线平台上开发更好的交互解决方案。这对于教授儿童可能会有所帮助,可以帮助培养教师和学生之间更好的互动联系,因为由于 COVID-19 大流行,在线教育平台的趋势越来越明显。为了解决这个问题,作者在这项研究中提出了基于视觉线索的儿童情绪识别,并使用可解释人工智能的合理推理模型。作者使用两个数据集来解决这个问题;第一个是 LIRIS 儿童自发面部表情视频数据库,第二个是作者创建的 7 至 10 岁儿童情绪显示的新颖数据集。作者发现,LIRIS 数据集仅达到 75%的准确率,并且没有研究进一步研究该数据集,作者在该数据集中达到了最高的 89.31%的准确率,在作者的数据集中国达到了 90.98%的准确率。作者还意识到,儿童和成人的面部结构不同,儿童表达情绪的方式非常不同,并不总是像成人那样对特定情绪表现出相同的面部表情方式。因此,作者使用了 3D 468 个地标点,并从原始选定的数据集创建了两个单独的数据集版本,即 LIRIS-Mesh 和 Authors-Mesh。总共使用了四种类型的数据集,即 LIRIS、作者的数据集、LIRIS-Mesh 和 Authors-Mesh,并使用七种不同的 CNN 模型进行了比较分析。作者不仅比较了在不同 CNN 模型上使用的所有数据集类型,还通过可解释人工智能(XAI)解释了在每个特定数据集类型上使用的每一种 CNN 类型,说明了深度学习模型如何感知测试图像,这有助于定位对特定情绪有贡献的特征。作者使用了三种 XAI 方法,即 Grad-CAM、Grad-CAM++和 SoftGrad,这有助于用户通过了解其特征的贡献,进一步确定情绪检测的适当原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf5e/9607169/d5248c5a78f5/sensors-22-08066-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验