Suppr超能文献

深度学习算法在 EEG 情绪识别中的可解释性评估:以自闭症为例的研究。

Evaluation of interpretability for deep learning algorithms in EEG emotion recognition: A case study in autism.

机构信息

Department of Information Engineering and Computer Science, University of Trento, Via Sommarive, Povo, Trento, 1328, Italy.

Department of Psychology, StonyBrook University, 100 Nicolls Rd, 11794, NY, USA.

出版信息

Artif Intell Med. 2023 Sep;143:102545. doi: 10.1016/j.artmed.2023.102545. Epub 2023 May 13.

Abstract

Current models on Explainable Artificial Intelligence (XAI) have shown a lack of reliability when evaluating feature-relevance for deep neural biomarker classifiers. The inclusion of reliable saliency-maps for obtaining trustworthy and interpretable neural activity is still insufficiently mature for practical applications. These limitations impede the development of clinical applications of Deep Learning. To address, these limitations we propose the RemOve-And-Retrain (ROAR) algorithm which supports the recovery of highly relevant features from any pre-trained deep neural network. In this study we evaluated the ROAR methodology and algorithm for the Face Emotion Recognition (FER) task, which is clinically applicable in the study of Autism Spectrum Disorder (ASD). We trained a Convolutional Neural Network (CNN) from electroencephalography (EEG) signals and assessed the relevance of FER-elicited EEG features from individuals diagnosed with and without ASD. Specifically, we compared the ROAR reliability from well-known relevance maps such as Layer-Wise Relevance Propagation, PatternNet, Pattern-Attribution, and Smooth-Grad Squared. This study is the first to bridge previous neuroscience and ASD research findings to feature-relevance calculation for EEG-based emotion recognition with CNN in typically-development (TD) and in ASD individuals.

摘要

当前的可解释人工智能 (XAI) 模型在评估深度神经网络生物标志物分类器的特征相关性时表现出缺乏可靠性。为了获得可靠且可解释的神经活动,包含可靠的显着性图的方法仍然不够成熟,无法应用于实际。这些限制阻碍了深度学习在临床应用中的发展。为了解决这些限制,我们提出了 RemOve-And-Retrain (ROAR) 算法,该算法支持从任何预先训练的深度神经网络中恢复高度相关的特征。在这项研究中,我们评估了 ROAR 方法和算法在面部情绪识别 (FER) 任务中的应用,该任务在自闭症谱系障碍 (ASD) 的研究中具有临床应用价值。我们从脑电图 (EEG) 信号中训练了卷积神经网络 (CNN),并评估了来自诊断为 ASD 和非 ASD 个体的 FER 诱发 EEG 特征的相关性。具体来说,我们比较了 ROAR 从广为人知的相关性图(如层间相关性传播、PatternNet、Pattern-Attribution 和 Smooth-Grad Squared)中获得的可靠性。这项研究首次将以前的神经科学和 ASD 研究发现与基于 CNN 的 EEG 情绪识别的特征相关性计算联系起来,涵盖了典型发育 (TD) 和 ASD 个体。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验