文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Explainable Artificial Intelligence (XAI) for Deep Learning Based Medical Imaging Classification.

作者信息

Ghnemat Rawan, Alodibat Sawsan, Abu Al-Haija Qasem

机构信息

Department of Computer Science, Princess Sumaya University for Technology, Amman 11941, Jordan.

Department of Cybersecurity, Princess Sumaya University for Technology, Amman 11941, Jordan.

出版信息

J Imaging. 2023 Aug 30;9(9):177. doi: 10.3390/jimaging9090177.


DOI:10.3390/jimaging9090177
PMID:37754941
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10532018/
Abstract

Recently, deep learning has gained significant attention as a noteworthy division of artificial intelligence (AI) due to its high accuracy and versatile applications. However, one of the major challenges of AI is the need for more interpretability, commonly referred to as the black-box problem. In this study, we introduce an explainable AI model for medical image classification to enhance the interpretability of the decision-making process. Our approach is based on segmenting the images to provide a better understanding of how the AI model arrives at its results. We evaluated our model on five datasets, including the COVID-19 and Pneumonia Chest X-ray dataset, Chest X-ray (COVID-19 and Pneumonia), COVID-19 Image Dataset (COVID-19, Viral Pneumonia, Normal), and COVID-19 Radiography Database. We achieved testing and validation accuracy of 90.6% on a relatively small dataset of 6432 images. Our proposed model improved accuracy and reduced time complexity, making it more practical for medical diagnosis. Our approach offers a more interpretable and transparent AI model that can enhance the accuracy and efficiency of medical diagnosis.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/240f4d1f27b2/jimaging-09-00177-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/cf2c3f0d9d22/jimaging-09-00177-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/03775cad6d66/jimaging-09-00177-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/f7e3f5de08ac/jimaging-09-00177-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/751d6fc43416/jimaging-09-00177-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/5f95e6a5489b/jimaging-09-00177-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/4a344f1f51d8/jimaging-09-00177-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/7a75788e0d23/jimaging-09-00177-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/597a1a683998/jimaging-09-00177-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/6203d6e222e5/jimaging-09-00177-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/b60bf14dd01f/jimaging-09-00177-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/c4c4e10346e2/jimaging-09-00177-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/eedeccf37235/jimaging-09-00177-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/c21d404d86f6/jimaging-09-00177-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/e4074543b992/jimaging-09-00177-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/7d6fb1c4f850/jimaging-09-00177-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/e808262fd667/jimaging-09-00177-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/2ea34202aad2/jimaging-09-00177-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/766176a29fae/jimaging-09-00177-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/25e9bf2732c7/jimaging-09-00177-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/4bb9c80c2d0f/jimaging-09-00177-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/d9ea28ea5cc1/jimaging-09-00177-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/240f4d1f27b2/jimaging-09-00177-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/cf2c3f0d9d22/jimaging-09-00177-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/03775cad6d66/jimaging-09-00177-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/f7e3f5de08ac/jimaging-09-00177-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/751d6fc43416/jimaging-09-00177-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/5f95e6a5489b/jimaging-09-00177-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/4a344f1f51d8/jimaging-09-00177-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/7a75788e0d23/jimaging-09-00177-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/597a1a683998/jimaging-09-00177-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/6203d6e222e5/jimaging-09-00177-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/b60bf14dd01f/jimaging-09-00177-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/c4c4e10346e2/jimaging-09-00177-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/eedeccf37235/jimaging-09-00177-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/c21d404d86f6/jimaging-09-00177-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/e4074543b992/jimaging-09-00177-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/7d6fb1c4f850/jimaging-09-00177-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/e808262fd667/jimaging-09-00177-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/2ea34202aad2/jimaging-09-00177-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/766176a29fae/jimaging-09-00177-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/25e9bf2732c7/jimaging-09-00177-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/4bb9c80c2d0f/jimaging-09-00177-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/d9ea28ea5cc1/jimaging-09-00177-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c035/10532018/240f4d1f27b2/jimaging-09-00177-g022.jpg

相似文献

[1]
Explainable Artificial Intelligence (XAI) for Deep Learning Based Medical Imaging Classification.

J Imaging. 2023-8-30

[2]
Detection of COVID-19 in X-ray Images Using Densely Connected Squeeze Convolutional Neural Network (DCSCNN): Focusing on Interpretability and Explainability of the Black Box Model.

Sensors (Basel). 2022-12-18

[3]
Interpretable Differential Diagnosis of Non-COVID Viral Pneumonia, Lung Opacity and COVID-19 Using Tuned Transfer Learning and Explainable AI.

Healthcare (Basel). 2023-1-31

[4]
Evaluating Explainable Artificial Intelligence (XAI) techniques in chest radiology imaging through a human-centered Lens.

PLoS One. 2024

[5]
DeepXplainer: An interpretable deep learning based approach for lung cancer detection using explainable artificial intelligence.

Comput Methods Programs Biomed. 2024-1

[6]
Explanatory classification of CXR images into COVID-19, Pneumonia and Tuberculosis using deep learning and XAI.

Comput Biol Med. 2022-11

[7]
Neuro-XAI: Explainable deep learning framework based on deeplabV3+ and bayesian optimization for segmentation and classification of brain tumor in MRI scans.

J Neurosci Methods. 2024-10

[8]
Identification of kidney stones in KUB X-ray images using VGG16 empowered with explainable artificial intelligence.

Sci Rep. 2024-3-14

[9]
Model-agnostic explainable artificial intelligence tools for severity prediction and symptom analysis on Indian COVID-19 data.

Front Artif Intell. 2023-12-4

[10]
Adaptive Mish activation and ranger optimizer-based SEA-ResNet50 model with explainable AI for multiclass classification of COVID-19 chest X-ray images.

BMC Med Imaging. 2024-8-9

引用本文的文献

[1]
Advanced skin cancer prediction with medical image data using MobileNetV2 deep learning and optimized techniques.

Sci Rep. 2025-8-7

[2]
Breast Lesion Detection Using Weakly Dependent Customized Features and Machine Learning Models with Explainable Artificial Intelligence.

J Imaging. 2025-4-28

[3]
Optimizing Deep Learning Models for Climate-Related Natural Disaster Detection from UAV Images and Remote Sensing Data.

J Imaging. 2025-1-24

[4]
A literature review of artificial intelligence (AI) for medical image segmentation: from AI and explainable AI to trustworthy AI.

Quant Imaging Med Surg. 2024-12-5

[5]
Unveiling the black box: A systematic review of Explainable Artificial Intelligence in medical image analysis.

Comput Struct Biotechnol J. 2024-8-12

[6]
Hybrid Feature Mammogram Analysis: Detecting and Localizing Microcalcifications Combining Gabor, Prewitt, GLCM Features, and Top Hat Filtering Enhanced with CNN Architecture.

Diagnostics (Basel). 2024-8-5

本文引用的文献

[1]
End-to-end Jordanian dialect speech-to-text self-supervised learning framework.

Front Robot AI. 2022-12-22

[2]
Computer Aided COVID-19 Diagnosis in Pandemic Era Using CNN in Chest X-ray Images.

Life (Basel). 2022-10-26

[3]
An explainable COVID-19 detection system based on human sounds.

Smart Health (Amst). 2022-12

[4]
Semantic-Powered Explainable Model-Free Few-Shot Learning Scheme of Diagnosing COVID-19 on Chest X-Ray.

IEEE J Biomed Health Inform. 2022-12

[5]
VGGCOV19-NET: automatic detection of COVID-19 cases from X-ray images using modified VGG19 CNN architecture and YOLO algorithm.

Neural Comput Appl. 2022

[6]
A spatiotemporal machine learning approach to forecasting COVID-19 incidence at the county level in the USA.

Int J Data Sci Anal. 2023

[7]
COVID-19 detection using chest X-ray images based on a developed deep neural network.

SLAS Technol. 2022-2

[8]
xViTCOS: Explainable Vision Transformer Based COVID-19 Screening Using Radiography.

IEEE J Transl Eng Health Med. 2022

[9]
Artificial Intelligence Applied to Chest X-Ray Images for the Automatic Detection of COVID-19. A Thoughtful Evaluation Approach.

IEEE Access. 2020-12-14

[10]
Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network.

Appl Intell (Dordr). 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索