Suppr超能文献

人工智能驱动的增强分析:超越商业智能的数字化转型。

Augmented Analytics Driven by AI: A Digital Transformation beyond Business Intelligence.

机构信息

Management Information Systems Department, College of Business Administration, King Saud University, Riyadh 11362, Saudi Arabia.

Information Technology Department, College of Computer and Information Sciences, King Saud University, Riyadh 11362, Saudi Arabia.

出版信息

Sensors (Basel). 2022 Oct 21;22(20):8071. doi: 10.3390/s22208071.

Abstract

Lately, Augmented Analytics (AA) has increasingly been introduced as a tool for transforming data into valuable insights for decision-making, and it has gained attention as one of the most advanced methods to facilitate modern analytics for different types of users. AA can be defined as a combination of Business Intelligence (BI) and the advanced features of Artificial Intelligence (AI). With the massive growth in data diversity, the traditional approach to BI has become less useful and requires additional work to obtain timely results. However, the power of AA that uses AI can be leveraged in BI platforms with the use of Machine Learning (ML) and natural language comprehension to automate the cycle of business analytics. Despite the various benefits for businesses and end users in converting from BI to AA, research on this trend has been limited. This study presents a comparison of the capabilities of the traditional BI and its augmented version in the business analytics cycle. Our findings show that AA enhances analysis, reduces time, and supports data preparation, visualization, modelling, and generation of insights. However, AI-driven analytics cannot fully replace human decision-making, as most business problems cannot be solved purely by machines. Human interaction and perspectives are essential, and decision-makers still play an important role in sharing and operationalizing findings.

摘要

最近,增强分析(Augmented Analytics,AA)作为一种将数据转化为有价值的决策见解的工具,越来越受到关注,它被认为是为不同类型用户促进现代分析的最先进方法之一。AA 可以定义为商业智能(Business Intelligence,BI)和人工智能(Artificial Intelligence,AI)的高级功能的结合。随着数据多样性的大规模增长,传统的 BI 方法已经变得不太有用,需要额外的工作来获得及时的结果。然而,利用 AI 的 AA 可以在使用机器学习(Machine Learning,ML)和自然语言理解来自动化业务分析周期的 BI 平台中发挥作用。尽管从 BI 转换到 AA 对企业和最终用户有各种好处,但对这一趋势的研究有限。本研究比较了传统 BI 及其在业务分析周期中的增强版本的能力。我们的研究结果表明,AA 增强了分析、减少了时间,并支持数据准备、可视化、建模和洞察生成。然而,人工智能驱动的分析不能完全取代人类决策,因为大多数业务问题不能仅由机器解决。人类的互动和视角是必不可少的,决策者在分享和实施发现方面仍然扮演着重要的角色。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/966a/9608484/c3bb3500dd28/sensors-22-08071-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验