Suppr超能文献

一种可持续的人工智能增强型癫痫数字护理路径:基于脑电图数据利用人工智能实现癫痫发作跟踪自动化。

A sustainable artificial-intelligence-augmented digital care pathway for epilepsy: Automating seizure tracking based on electroencephalogram data using artificial intelligence.

作者信息

Keikhosrokiani Pantea, Isomursu Minna, Uusimaa Johanna, Kortelainen Jukka

机构信息

Empirical Software Engineering in Software, Systems, and Services, University of Oulu, Oulu, Finland.

Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland.

出版信息

Digit Health. 2024 Oct 7;10:20552076241287356. doi: 10.1177/20552076241287356. eCollection 2024 Jan-Dec.

Abstract

OBJECTIVE

Scalp electroencephalograms (EEGs) are critical for neurological evaluations, particularly in epilepsy, yet they demand specialized expertise that is often lacking in many regions. Artificial intelligence (AI) offers potential solutions to this gap. While existing AI models address certain aspects of EEG analysis, a fully automated system for routine EEG interpretation is required for effective epilepsy management and healthcare professionals' decision-making. This study aims to develop an AI-augmented model for automating EEG seizure tracking, thereby supporting a sustainable digital care pathway for epilepsy (DCPE). The goal is to improve patient monitoring, facilitate collaborative decision-making, ensure timely medication adherence, and promote patient compliance.

METHOD

The study proposes an AI-augmented framework using machine learning, focusing on quantitative analysis of EEG data to automate DCPE. A focus group discussion was conducted with healthcare professionals to find the problem of the current digital care pathway and assess the feasibility, usability, and sustainability of the AI-augmented system in the digital care pathway.

RESULTS

The study found that a combination of random forest with principal component analysis and support vector machines with KBest feature selection achieved high accuracy rates of 96.52% and 95.28%, respectively. Additionally, the convolutional neural networks model outperformed other deep learning algorithms with an accuracy of 97.65%. The focus group discussion revealed that automating the diagnostic process in digital care pathway could reduce the time needed to diagnose epilepsy. However, the sustainability of the AI-integrated framework depends on factors such as technological infrastructure, skilled personnel, training programs, patient digital literacy, financial resources, and regulatory compliance.

CONCLUSION

The proposed AI-augmented system could enhance epilepsy management by optimizing seizure tracking accuracy, improving monitoring and timely interventions, facilitating collaborative decision-making, and promoting patient-centered care, thereby making the digital care pathway more sustainable.

摘要

目的

头皮脑电图(EEG)对于神经学评估至关重要,尤其是在癫痫领域,但它需要专业知识,而许多地区往往缺乏这种知识。人工智能(AI)为弥补这一差距提供了潜在的解决方案。虽然现有的人工智能模型解决了脑电图分析的某些方面,但有效的癫痫管理和医疗保健专业人员的决策需要一个用于常规脑电图解释的全自动系统。本研究旨在开发一种人工智能增强模型,用于自动跟踪脑电图癫痫发作,从而支持可持续的癫痫数字护理路径(DCPE)。目标是改善患者监测,促进协作决策,确保及时服药依从性,并提高患者的依从性。

方法

该研究提出了一个使用机器学习的人工智能增强框架,重点是对脑电图数据进行定量分析,以实现DCPE自动化。与医疗保健专业人员进行了焦点小组讨论,以发现当前数字护理路径的问题,并评估人工智能增强系统在数字护理路径中的可行性、可用性和可持续性。

结果

研究发现,随机森林与主成分分析相结合以及支持向量机与KBest特征选择相结合,分别实现了96.52%和95.28%的高精度率。此外,卷积神经网络模型的准确率为97.65%,优于其他深度学习算法。焦点小组讨论表明,在数字护理路径中实现诊断过程自动化可以减少诊断癫痫所需的时间。然而,人工智能集成框架的可持续性取决于技术基础设施、技术人员、培训计划、患者数字素养、财政资源和监管合规等因素。

结论

所提出的人工智能增强系统可以通过优化癫痫发作跟踪准确性、改善监测和及时干预、促进协作决策以及促进以患者为中心的护理来加强癫痫管理,从而使数字护理路径更具可持续性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f76c/11459578/b059fbc6cdd8/10.1177_20552076241287356-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验