Kiryu Yoshihiro
Department of Pharmacy, M&B Collaboration Medical Corporation Hokuetsu Hospital.
Yakugaku Zasshi. 2023;143(6):501-505. doi: 10.1248/yakushi.22-00179-4.
Industrial reforms utilizing artificial intelligence (AI) have been progressing remarkably worldwide in recent years. In medical informatics, medical big-data analytics involving AI are increasingly being promoted, and AI in the medical field is being widely applied in research areas such as protein-structure analysis and diagnostic support. Previously, we developed a unique adverse drug reactions analysis system that incorporates Accord.NET, an open-source machine learning (ML) framework written in the programming language C#, and uses the Japanese Adverse Drug Event Report (JADER) database. The developed system can provide necessary information for exploratory investigation of drug efficacy, side effects, adherence, and so on. To efficiently interpret the calculated data and minimize noise, the developed system features a data visualization tool that can visualize the results of various statistical analyses and machine learning models in real-time three dimensions (3D), making it intuitive to grasp the results. This feature makes the system ideal for individuals in clinical work. We believe that the system will facilitate more efficient drug management and clinical pharmacy research. In this review, we introduce an example of domain-driven design development of this AI analysis system for pharmacists in clinical practice with the aim of further utilizing medical big data and AI analytics.
近年来,利用人工智能(AI)的产业改革在全球范围内取得了显著进展。在医学信息学领域,涉及人工智能的医学大数据分析正日益得到推广,并且人工智能在医学领域正广泛应用于蛋白质结构分析和诊断支持等研究领域。此前,我们开发了一个独特的药物不良反应分析系统,该系统整合了Accord.NET(一种用C#编程语言编写的开源机器学习(ML)框架),并使用日本药品不良反应报告(JADER)数据库。所开发的系统能够为药物疗效、副作用、依从性等方面的探索性研究提供必要信息。为了有效解释计算数据并将噪声降至最低,所开发的系统具有一个数据可视化工具,该工具能够实时以三维(3D)形式可视化各种统计分析和机器学习模型的结果,从而使结果易于直观理解。这一特性使该系统非常适合临床工作中的人员使用。我们相信该系统将有助于实现更高效的药物管理和临床药学研究。在本综述中,我们为临床实践中的药剂师介绍该人工智能分析系统的领域驱动设计开发示例,旨在进一步利用医学大数据和人工智能分析。