Li Zhongya, Shi Jianyang, Zhao Yiheng, Li Guoqiang, Chen Jiang, Zhang Junwen, Chi Nan
Opt Express. 2022 Aug 1;30(16):28905-28921. doi: 10.1364/OE.464277.
Aside from ambient light noise, shot noise, and linear/nonlinear effects, strong low-frequency noise (LFN) severely affects the signal quality in LED-based visible light communication (VLC) systems, which hinders the implementation of data-driven end-to-end (E2E) deep learning approaches in real LED-VLC systems. We present a deep learning-based autoencoder to deal with this challenge. A novel modeling strategy is proposed to bypass the influence of the LFN and other low signal-to-noise ratio data when training the channel model of our E2E framework. The deep learning-based autoencoder then embeds the differentiable channel model and learns to combat the majority of channel impairments. In the E2E LED-VLC experiment, 1.875 Gbps transmission is achieved under the 7% HD-FEC threshold, 0.325 Gbps faster than the baseline. The E2E framework is robust to signal bias and amplitude variations, implying dimming support in the indoor environment.
除了环境光噪声、散粒噪声和线性/非线性效应外,强低频噪声(LFN)严重影响基于发光二极管(LED)的可见光通信(VLC)系统中的信号质量,这阻碍了数据驱动的端到端(E2E)深度学习方法在实际LED-VLC系统中的应用。我们提出了一种基于深度学习的自动编码器来应对这一挑战。在训练我们的E2E框架的信道模型时,提出了一种新颖的建模策略,以绕过LFN和其他低信噪比数据的影响。基于深度学习的自动编码器随后嵌入可微信道模型,并学习对抗大多数信道损伤。在E2E LED-VLC实验中,在7%的高清前向纠错(HD-FEC)阈值下实现了1.875 Gbps的传输,比基线快0.325 Gbps。该E2E框架对信号偏差和幅度变化具有鲁棒性,这意味着在室内环境中支持调光。