Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States.
Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States.
ACS Infect Dis. 2022 Nov 11;8(11):2307-2314. doi: 10.1021/acsinfecdis.2c00382. Epub 2022 Oct 27.
is classified as a highest threat pathogen, urgently necessitating novel antimicrobials that evade resistance to combat its spread. Quaternary ammonium compounds (QACs) have afforded a valuable first line of defense against antimicrobial resistant pathogens as broad-spectrum amphiphilic disinfectant molecules. However, a paucity of innovation in this space has driven the emergence of QAC resistance. Through this work, we sought to identify next-generation disinfectant molecules with efficacy against highly resistant clinical isolates. We selected 12 best-in-class molecules from our previous investigations of quaternary ammonium and quaternary phosphonium compounds (QPCs) to test against a panel of 35 resistant clinical isolates. The results highlighted the efficacy of our next-generation compounds over leading commercial QACs, with our best-in-class QAC (2Pyr-11,11) and QPC (P6P-10,10) displaying improved activities with a few exceptions. Furthermore, we elucidated a correlation between colistin resistance and QAC resistance, wherein the only pan-resistant isolate of the panel, also harboring colistin resistance, exhibited resistance to all tested QACs. Notably, P6P-10,10 maintained efficacy against this strain with an IC of 3 μM. In addition, P6P-10,10 displayed minimum biofilm eradication concentrations as low as 32 μM against extensively drug resistant clinical isolates. Lastly, examining the development of disinfectant resistance and cross-resistance, we generated QAC-resistant mutants and observed the development of QAC cross-resistance. In contrast, neither disinfectant resistance nor cross-resistance was observed in under P6P-10,10 treatment. Taken together, the results of this work illustrate the need for novel disinfectant compounds to treat resistant pathogens, such as , and underscore the promise of QPCs, such as P6P-10,10, as viable next-generation disinfectant molecules.
被归类为最高威胁病原体,迫切需要新型抗菌药物来抵御其传播,避免产生耐药性。季铵化合物(QACs)作为广谱两亲性消毒剂分子,为对抗抗药性的病原体提供了宝贵的第一道防线。然而,由于该领域缺乏创新,导致了 QAC 耐药性的出现。通过这项工作,我们旨在寻找对高度耐药的临床分离株具有疗效的下一代消毒剂分子。我们从之前对季铵盐和季鏻化合物(QPCs)的研究中选择了 12 种最佳的化合物,用于测试 35 种耐药临床分离株的药物效果。结果突出了我们下一代化合物的有效性超过了领先的商业 QAC,其中我们的最佳 QAC(2Pyr-11,11)和 QPC(P6P-10,10)在少数情况下显示出了改进的活性。此外,我们阐明了粘菌素耐药性与 QAC 耐药性之间的相关性,在所研究的 35 株临床分离株中,唯一的泛耐药分离株也同时具有粘菌素耐药性,对所有测试的 QAC 都表现出耐药性。值得注意的是,P6P-10,10 对该菌株的 IC 为 3 μM,仍然保持了疗效。此外,P6P-10,10 对广泛耐药的临床分离株的最低生物膜消除浓度低至 32 μM。最后,研究消毒剂耐药性和交叉耐药性的发展,我们生成了 QAC 耐药的突变株,并观察到 QAC 交叉耐药性的发展。相比之下,在 P6P-10,10 处理下,没有观察到消毒剂耐药性或交叉耐药性。总的来说,这项工作的结果表明需要新型消毒剂化合物来治疗耐药病原体,如 ,并强调了 QPC 类化合物,如 P6P-10,10,作为有前途的下一代消毒剂分子的重要性。