Suppr超能文献

基于融合特征和深度学习的先天性心脏病辅助诊断技术

Assistive diagnostic technology for congenital heart disease based on fusion features and deep learning.

作者信息

Wang Yuanlin, Yang Xuankai, Qian Xiaozhao, Wang Weilian, Guo Tao

机构信息

School of Information Science and Engineering, Yunnan University, Kunming, China.

Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou, China.

出版信息

Front Physiol. 2023 Nov 23;14:1310434. doi: 10.3389/fphys.2023.1310434. eCollection 2023.

Abstract

Congenital heart disease (CHD) is a cardiovascular disorder caused by structural defects in the heart. Early screening holds significant importance for the effective treatment of this condition. Heart sound analysis is commonly employed to assist in the diagnosis of CHD. However, there is currently a lack of an efficient automated model for heart sound classification, which could potentially replace the manual process of auscultation. This study introduces an innovative and efficient screening and classification model, combining a locally concatenated fusion approach with a convolutional neural network based on coordinate attention (LCACNN). In this model, Mel-frequency spectral coefficients (MFSC) and envelope features are locally fused and employed as input to the LCACNN network. This model automatically analyzes feature map energy information, eliminating the need for denoising processes. The proposed classification model in this study demonstrates a robust capability for identifying congenital heart disease, potentially substituting manual auscultation to facilitate the detection of patients in remote areas. This study introduces an innovative and efficient screening and classification model, combining a locally concatenated fusion approach with a convolutional neural network based on coordinate attention (LCACNN). In this model, Mel-frequency spectral coefficients (MFSC) and envelope features are locally fused and employed as input to the LCACNN network. This model automatically analyzes feature map energy information, eliminating the need for denoising processes. To assess the performance of the classification model, comparative ablation experiments were conducted, achieving classification accuracies of 91.78% and 94.79% on the PhysioNet and HS databases, respectively. These results significantly outperformed alternative classification models.

摘要

先天性心脏病(CHD)是一种由心脏结构缺陷引起的心血管疾病。早期筛查对于有效治疗这种疾病至关重要。心音分析通常用于辅助先天性心脏病的诊断。然而,目前缺乏一种高效的自动心音分类模型,该模型有可能取代人工听诊过程。本研究引入了一种创新且高效的筛查和分类模型,将局部拼接融合方法与基于坐标注意力的卷积神经网络(LCACNN)相结合。在该模型中,梅尔频率谱系数(MFSC)和包络特征进行局部融合,并用作LCACNN网络的输入。该模型自动分析特征图能量信息,无需去噪过程。本研究中提出的分类模型在识别先天性心脏病方面表现出强大的能力,有可能替代人工听诊,便于在偏远地区检测患者。本研究引入了一种创新且高效的筛查和分类模型,将局部拼接融合方法与基于坐标注意力的卷积神经网络(LCACNN)相结合。在该模型中,梅尔频率谱系数(MFSC)和包络特征进行局部融合,并用作LCACNN网络的输入。该模型自动分析特征图能量信息,无需去噪过程。为了评估分类模型的性能,进行了对比消融实验,在PhysioNet和HS数据库上分别达到了91.78%和94.79%的分类准确率。这些结果显著优于其他分类模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0d/10701267/e22c911b3016/fphys-14-1310434-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验