粘弹性牙本质的多尺度细观力学模型
The multi-scale meso-mechanics model of viscoelastic dentin.
作者信息
Chen Yusen, Wu Rui, Shen Lulu, Yang Yabin, Wang Guannan, Yang Bo
机构信息
Department of Civil Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Center for Balance Architecture, Zhejiang University, Hangzhou, 310007, China.
出版信息
J Mech Behav Biomed Mater. 2022 Dec;136:105525. doi: 10.1016/j.jmbbm.2022.105525. Epub 2022 Oct 20.
Human dentin is a hierarchical material with multi-level micro-/nano-structures, consisting of tubule, perti-tubular dentin (PTD) and intertubular dentin (ITD) as the major constituents at microscale; and the PTD and ITD are further composed of collagen and hydroxyapatite (HAp) crystals with different volume fractions at nanoscale. In most cases, the HAp is considered as elastic while the collagen as viscoelastic material. It is of great significance to study the hierarchical structure and viscoelasticity of human dentin to understand the mechanical properties of dentin for further development of restorative materials. Based on this, this paper focuses on multiscale modeling of the elastic properties and dynamic viscoelastic response of dentin and establishes a bottom-up micromechanics model from nano-to macro-scale. In order to study the nanostructural effect on the viscoelastic behavior of hierarchical structures, the homogenization theories of random platelets composites (HTRPC) and the locally-exact homogenization theory (LEHT) are introduced for the homogenization of heterogeneous materials of microstructures at different levels. The HTRPC, based on Eshelby Inclusion theory, is used to predict the effective modulus of PTD and ITD. The LEHT is a method for homogenizing multiphase dentin characterized by repeated unit cells (RUCs). The resulting predictions are in very good agreement with several experimental data from the literature. In addition, the results of nanostructrual effect on dentin show that the viscoelasticity of dentin is majorly contributed by collagen and the HAp greatly provide the strength and hardness of dentin. Furthermore, the ageing effect on dentin's viscoelasticity is considered from the proposed multiscale micromechanics model. It is demonstrated that the ageing effect is much more influential in affecting the loss moduli of dentin than the storage.
人类牙本质是一种具有多级微观/纳米结构的层级材料,在微观尺度上,其主要组成部分为牙本质小管、管周牙本质(PTD)和管间牙本质(ITD);而在纳米尺度上,PTD和ITD进一步由具有不同体积分数的胶原蛋白和羟基磷灰石(HAp)晶体组成。在大多数情况下,HAp被认为是弹性材料,而胶原蛋白是粘弹性材料。研究人类牙本质的层级结构和粘弹性对于理解牙本质的力学性能以及进一步开发修复材料具有重要意义。基于此,本文重点研究牙本质弹性性能和动态粘弹性响应的多尺度建模,并建立了从纳米尺度到宏观尺度的自下而上的细观力学模型。为了研究纳米结构对层级结构粘弹性行为的影响,引入了随机薄片复合材料均匀化理论(HTRPC)和局部精确均匀化理论(LEHT)来对不同层次微观结构的非均质材料进行均匀化处理。基于埃舍尔比夹杂理论的HTRPC用于预测PTD和ITD的有效模量。LEHT是一种用于对以重复晶胞(RUC)为特征的多相牙本质进行均匀化处理的方法。所得预测结果与文献中的若干实验数据非常吻合。此外,纳米结构对牙本质影响的结果表明,牙本质的粘弹性主要由胶原蛋白贡献,而HAp极大地提供了牙本质的强度和硬度。此外,从所提出的多尺度细观力学模型考虑了老化对牙本质粘弹性的影响。结果表明,老化效应在影响牙本质损耗模量方面比储能模量更具影响力。