Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Genetics. 2023 Jan 12;223(1). doi: 10.1093/genetics/iyac164.
Proper repair of DNA double-strand breaks is essential to the maintenance of genomic stability and avoidance of genetic disease. Organisms have many ways of repairing double-strand breaks, including the use of homologous sequences through homology-directed repair. While homology-directed repair is often error free, in single-strand annealing homologous repeats flanking a double-strand break are annealed to one another, leading to the deletion of one repeat and the intervening sequences. Studies in yeast have shown a relationship between the length of the repeat and single-strand annealing efficacy. We sought to determine the effects of homology length on single-strand annealing in Drosophila, as Drosophila uses a different annealing enzyme (Marcal1) than yeast. Using an in vivo single-strand annealing assay, we show that 50 base pairs are insufficient to promote single-strand annealing and that 500-2,000 base pairs are required for maximum efficiency. Loss of Marcal1 generally followed the same homology length trend as wild-type flies, with single-strand annealing frequencies reduced to about a third of wild-type frequencies regardless of homology length. Interestingly, we find a difference in single-strand annealing rates between 500-base pair homologies that align to the annealing target either nearer or further from the double-strand break, a phenomenon that may be explained by Marcal1 dynamics. This study gives insights into Marcal1 function and provides important information to guide the design of genome engineering strategies that use single-strand annealing to integrate linear DNA constructs into a chromosomal double-strand break.
正确修复 DNA 双链断裂对于维持基因组稳定性和避免遗传疾病至关重要。生物有许多修复双链断裂的方法,包括通过同源重组利用同源序列。虽然同源重组通常是无错误的,但在单链退火中,双链断裂侧翼的同源重复序列彼此退火,导致一个重复序列和间隔序列的缺失。酵母的研究表明,重复序列的长度与单链退火效率之间存在关系。我们试图确定同源长度对果蝇中单链退火的影响,因为果蝇使用不同于酵母的退火酶(Marcal1)。通过体内单链退火测定,我们表明 50 个碱基对不足以促进单链退火,而 500-2000 个碱基对是达到最大效率所必需的。Marcal1 的缺失通常遵循与野生型果蝇相同的同源长度趋势,无论同源长度如何,单链退火频率降低到野生型频率的约三分之一。有趣的是,我们发现 500 个碱基对的同源物之间的单链退火速率存在差异,这些同源物要么靠近双链断裂,要么远离退火靶标,这种现象可以用 Marcal1 的动力学来解释。这项研究深入了解了 Marcal1 的功能,并为指导使用单链退火将线性 DNA 构建体整合到染色体双链断裂的基因组工程策略的设计提供了重要信息。