Suppr超能文献

AGO1 和 HSP90 在拟南芥中缓冲不同的遗传变异。

AGO1 and HSP90 buffer different genetic variants in Arabidopsis thaliana.

机构信息

Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA.

出版信息

Genetics. 2023 Feb 9;223(2). doi: 10.1093/genetics/iyac163.

Abstract

Argonaute 1 (AGO1), the principal protein component of microRNA-mediated regulation, plays a key role in plant growth and development. AGO1 physically interacts with the chaperone HSP90, which buffers cryptic genetic variation in plants and animals. We sought to determine whether genetic perturbation of AGO1 in Arabidopsis thaliana would also reveal cryptic genetic variation, and if so, whether AGO1-dependent loci overlap with those dependent on HSP90. To address these questions, we introgressed a hypomorphic mutant allele of AGO1 into a set of mapping lines derived from the commonly used Arabidopsis strains Col-0 and Ler. Although we identified several cases in which AGO1 buffered genetic variation, none of the AGO1-dependent loci overlapped with those buffered by HSP90 for the traits assayed. We focused on 1 buffered locus where AGO1 perturbation uncoupled the traits days to flowering and rosette leaf number, which are otherwise closely correlated. Using a bulk segregant approach, we identified a nonfunctional Ler hua2 mutant allele as the causal AGO1-buffered polymorphism. Introduction of a nonfunctional hua2 allele into a Col-0 ago1 mutant background recapitulated the Ler-dependent ago1 phenotype, implying that coupling of these traits involves different molecular players in these closely related strains. Taken together, our findings demonstrate that even though AGO1 and HSP90 buffer genetic variation in the same traits, these robustness regulators interact epistatically with different genetic loci, suggesting that higher-order epistasis is uncommon. Plain Language Summary Argonaute 1 (AGO1), a key player in plant development, interacts with the chaperone HSP90, which buffers environmental and genetic variation. We found that AGO1 buffers environmental and genetic variation in the same traits; however, AGO1-dependent and HSP90-dependent loci do not overlap. Detailed analysis of a buffered locus found that a nonfunctional HUA2 allele decouples days to flowering and rosette leaf number in an AGO1-dependent manner, suggesting that the AGO1-dependent buffering acts at the network level.

摘要

Argonaute 1 (AGO1),miRNA 介导调控的主要蛋白成分,在植物生长发育中发挥关键作用。AGO1 与伴侣 HSP90 相互作用,缓冲植物和动物中的隐性遗传变异。我们试图确定拟南芥中 AGO1 的遗传扰动是否也会揭示隐性遗传变异,如果是这样,AGO1 依赖的基因座是否与 HSP90 依赖的基因座重叠。为了解决这些问题,我们将 AGO1 的一个功能减弱突变等位基因导入一组源自常用的拟南芥菌株 Col-0 和 Ler 的作图系。尽管我们鉴定了几个 AGO1 缓冲遗传变异的情况,但在所测定的性状中,没有一个 AGO1 依赖的基因座与 HSP90 缓冲的基因座重叠。我们集中研究了一个缓冲的基因座,其中 AGO1 的扰动使开花天数和莲座叶数这两个性状解耦,而这两个性状通常是密切相关的。使用批量分离群体方法,我们鉴定了一个非功能性 Ler hua2 突变等位基因作为因果 AGO1 缓冲多态性。将一个非功能性的 hua2 等位基因导入 Col-0 ago1 突变体背景中,重现了 Ler 依赖的 ago1 表型,这意味着这些性状的耦合涉及到这些密切相关的品系中不同的分子元件。总之,我们的研究结果表明,尽管 AGO1 和 HSP90 在相同的性状中缓冲遗传变异,但这些稳健性调节剂与不同的遗传基因座呈上位性相互作用,这表明高阶上位性并不常见。

相似文献

1
AGO1 and HSP90 buffer different genetic variants in Arabidopsis thaliana.
Genetics. 2023 Feb 9;223(2). doi: 10.1093/genetics/iyac163.
2
The Mechanistic Underpinnings of an ago1-Mediated, Environmentally Dependent, and Stochastic Phenotype.
Plant Physiol. 2016 Apr;170(4):2420-31. doi: 10.1104/pp.15.01928. Epub 2016 Feb 12.
3
CURLY LEAF Regulates MicroRNA Activity by Controlling ARGONAUTE 1 Degradation in Plants.
Mol Plant. 2020 Jan 6;13(1):72-87. doi: 10.1016/j.molp.2019.10.003. Epub 2019 Oct 10.
6
AGO1 controls arabidopsis inflorescence architecture possibly by regulating TFL1 expression.
Ann Bot. 2014 Nov;114(7):1471-81. doi: 10.1093/aob/mcu132. Epub 2014 Jul 2.
9
Farnesylated heat shock protein 40 is a component of membrane-bound RISC in .
J Biol Chem. 2018 Oct 26;293(43):16608-16622. doi: 10.1074/jbc.RA118.003887. Epub 2018 Sep 7.
10
Dose-Dependent AGO1-Mediated Inhibition of the miRNA165/166 Pathway Modulates Stem Cell Maintenance in Shoot Apical Meristem.
Plant Commun. 2019 Sep 16;1(1):100002. doi: 10.1016/j.xplc.2019.100002. eCollection 2020 Jan 13.

引用本文的文献

2
Domestication history and genetic changes for the newly evolved flower color in the ornamental plant (Brassicaceae).
Hortic Res. 2024 Dec 19;12(4):uhae355. doi: 10.1093/hr/uhae355. eCollection 2025 Apr.
3
The Hsp90 Molecular Chaperone as a Global Modifier of the Genotype-Phenotype-Fitness Map: An Evolutionary Perspective.
J Mol Biol. 2024 Dec 1;436(23):168846. doi: 10.1016/j.jmb.2024.168846. Epub 2024 Oct 29.
4
Self-organization underlies developmental robustness in plants.
Cells Dev. 2024 Jul 1:203936. doi: 10.1016/j.cdev.2024.203936.
5
Mutational robustness and the role of buffer genes in evolvability.
EMBO J. 2024 Jun;43(12):2294-2307. doi: 10.1038/s44318-024-00109-1. Epub 2024 May 8.
6
Tracing genetic diversity captures the molecular basis of misfolding disease.
Nat Commun. 2024 Apr 18;15(1):3333. doi: 10.1038/s41467-024-47520-0.
7
LTP2 hypomorphs show genotype-by-environment interaction in early seedling traits in Arabidopsis thaliana.
New Phytol. 2024 Jan;241(1):253-266. doi: 10.1111/nph.19334. Epub 2023 Oct 22.
8
hypomorphs show genotype-by-environment interaction in early seedling traits in .
bioRxiv. 2023 Sep 20:2023.05.11.540469. doi: 10.1101/2023.05.11.540469.
9
Highlighting plant science with a GENETICS and G3 series on Plant Genetics and Genomics.
G3 (Bethesda). 2023 Feb 9;13(2). doi: 10.1093/g3journal/jkad010.
10
Highlighting plant science with a GENETICS and G3 series on Plant Genetics and Genomics.
Genetics. 2023 Feb 9;223(2). doi: 10.1093/genetics/iyad003.

本文引用的文献

1
microRNAs and Their Roles in Plant Development.
Front Plant Sci. 2022 Feb 18;13:824240. doi: 10.3389/fpls.2022.824240. eCollection 2022.
2
Redundancy, Feedback, and Robustness in the Gene Family.
Front Genet. 2018 Nov 13;9:523. doi: 10.3389/fgene.2018.00523. eCollection 2018.
3
Preferences in a trait decision determined by transcription factor variants.
Proc Natl Acad Sci U S A. 2018 Aug 21;115(34):E7997-E8006. doi: 10.1073/pnas.1805882115. Epub 2018 Aug 1.
5
It's not magic - Hsp90 and its effects on genetic and epigenetic variation.
Semin Cell Dev Biol. 2019 Apr;88:21-35. doi: 10.1016/j.semcdb.2018.05.015. Epub 2018 Jun 6.
7
In vitro reconstitution of chaperone-mediated human RISC assembly.
RNA. 2018 Jan;24(1):6-11. doi: 10.1261/rna.063891.117. Epub 2017 Oct 2.
8
The FLC Locus: A Platform for Discoveries in Epigenetics and Adaptation.
Annu Rev Cell Dev Biol. 2017 Oct 6;33:555-575. doi: 10.1146/annurev-cellbio-100616-060546. Epub 2017 Jul 10.
9
The HSP90 chaperone machinery.
Nat Rev Mol Cell Biol. 2017 Jun;18(6):345-360. doi: 10.1038/nrm.2017.20. Epub 2017 Apr 21.
10
HSP90 Shapes the Consequences of Human Genetic Variation.
Cell. 2017 Feb 23;168(5):856-866.e12. doi: 10.1016/j.cell.2017.01.023. Epub 2017 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验