Suppr超能文献

茎尖分生组织与侧生器官之间的相互作用。

Interplay between the shoot apical meristem and lateral organs.

作者信息

Guan Chunmei, Jiao Yuling

机构信息

State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China.

University of Chinese Academy of Sciences, Beijing, 100049 China.

出版信息

aBIOTECH. 2020 May 27;1(3):178-184. doi: 10.1007/s42994-020-00021-2. eCollection 2020 Jul.

Abstract

Tissues and organs within a living organism are coordinated, but the underlying mechanisms are not well understood. The shoot apical meristem (SAM) continually produces lateral organs, such as leaves, from its peripheral zone. Because of their close proximity, SAM and lateral organs interact during plant development. Existing lateral organs influence the positions of newly formed organs to determine the phyllotaxis. The SAM not only produces lateral organs, but also influences their morphogenesis. In particular, the SAM promotes leaf polarity determination and leaf blade formation. Furthermore, lateral organs help the SAM to maintain homeostasis by restricting stem cell activity. Recent advances have started to elucidate how SAM and lateral organs patterning and growth are coordinated in the shoot apex. In this review, we discuss recent findings on the interaction between SAM and lateral organs during plant development. In particular, polar auxin transport appears to be a commonly used coordination mechanism.

摘要

生物体中的组织和器官是相互协调的,但其潜在机制尚未得到充分理解。茎尖分生组织(SAM)从其外周区持续产生侧生器官,如叶子。由于它们距离很近,SAM和侧生器官在植物发育过程中相互作用。现有的侧生器官影响新形成器官的位置以确定叶序。SAM不仅产生侧生器官,还影响它们的形态发生。特别是,SAM促进叶片极性的确定和叶片的形成。此外,侧生器官通过限制干细胞活性来帮助SAM维持体内平衡。最近的进展已开始阐明SAM和侧生器官的模式形成及生长在茎尖是如何协调的。在这篇综述中,我们讨论了植物发育过程中SAM和侧生器官之间相互作用的最新发现。特别是,极性生长素运输似乎是一种常用的协调机制。

相似文献

1
Interplay between the shoot apical meristem and lateral organs.
aBIOTECH. 2020 May 27;1(3):178-184. doi: 10.1007/s42994-020-00021-2. eCollection 2020 Jul.
2
Patterning at the shoot apical meristem and phyllotaxis.
Curr Top Dev Biol. 2019;131:81-107. doi: 10.1016/bs.ctdb.2018.10.003. Epub 2018 Nov 27.
3
Auxin and self-organization at the shoot apical meristem.
J Exp Bot. 2013 Jun;64(9):2579-92. doi: 10.1093/jxb/ert101. Epub 2013 Apr 12.
4
Feedback from Lateral Organs Controls Shoot Apical Meristem Growth by Modulating Auxin Transport.
Dev Cell. 2018 Jan 22;44(2):204-216.e6. doi: 10.1016/j.devcel.2017.12.021.
5
Auxin regulates the initiation and radial position of plant lateral organs.
Plant Cell. 2000 Apr;12(4):507-18. doi: 10.1105/tpc.12.4.507.
6
Cell signaling in the shoot apical meristem.
Plant Physiol. 2023 Aug 31;193(1):70-82. doi: 10.1093/plphys/kiad309.
7
Local auxin biosynthesis promotes shoot patterning and stem cell differentiation in Arabidopsis shoot apex.
Development. 2023 Dec 1;150(23). doi: 10.1242/dev.202014. Epub 2023 Dec 6.
8
Model for the role of auxin polar transport in patterning of the leaf adaxial-abaxial axis.
Plant J. 2017 Nov;92(3):469-480. doi: 10.1111/tpj.13670. Epub 2017 Sep 26.
9
Phyllotaxis: from classical knowledge to molecular genetics.
J Plant Res. 2021 May;134(3):373-401. doi: 10.1007/s10265-020-01247-3. Epub 2021 Feb 7.
10
Signalling between the shoot apical meristem and developing lateral organs.
Plant Mol Biol. 2006 Apr;60(6):889-903. doi: 10.1007/s11103-005-1270-y.

引用本文的文献

3
Polar auxin transport modulates early leaf flattening.
Proc Natl Acad Sci U S A. 2022 Dec 13;119(50):e2215569119. doi: 10.1073/pnas.2215569119. Epub 2022 Dec 5.
4
Genetic and molecular pathways controlling rice inflorescence architecture.
Front Plant Sci. 2022 Sep 28;13:1010138. doi: 10.3389/fpls.2022.1010138. eCollection 2022.

本文引用的文献

1
Progress in understanding the role of auxin in lateral organ development in plants.
Curr Opin Plant Biol. 2020 Feb;53:73-79. doi: 10.1016/j.pbi.2019.10.007. Epub 2019 Nov 27.
2
WUSCHEL acts as an auxin response rheostat to maintain apical stem cells in Arabidopsis.
Nat Commun. 2019 Nov 8;10(1):5093. doi: 10.1038/s41467-019-13074-9.
3
The 35S promoter-driven mDII auxin control sensor is uniformly distributed in leaf primordia.
J Integr Plant Biol. 2019 Nov;61(11):1114-1120. doi: 10.1111/jipb.12853. Epub 2019 Sep 11.
4
Toward a 3D model of phyllotaxis based on a biochemically plausible auxin-transport mechanism.
PLoS Comput Biol. 2019 Apr 18;15(4):e1006896. doi: 10.1371/journal.pcbi.1006896. eCollection 2019 Apr.
6
Patterning at the shoot apical meristem and phyllotaxis.
Curr Top Dev Biol. 2019;131:81-107. doi: 10.1016/bs.ctdb.2018.10.003. Epub 2018 Nov 27.
7
The CLV-WUS Stem Cell Signaling Pathway: A Roadmap to Crop Yield Optimization.
Plants (Basel). 2018 Oct 19;7(4):87. doi: 10.3390/plants7040087.
8
On the mechanisms of development in monocot and eudicot leaves.
New Phytol. 2019 Jan;221(2):706-724. doi: 10.1111/nph.15371. Epub 2018 Aug 14.
9
From signals to stem cells and back again.
Curr Opin Plant Biol. 2018 Oct;45(Pt A):136-142. doi: 10.1016/j.pbi.2018.06.005. Epub 2018 Jul 4.
10
Getting leaves into shape: a molecular, cellular, environmental and evolutionary view.
Development. 2018 Jul 10;145(13):dev161646. doi: 10.1242/dev.161646.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验