Han Ye, He Fei, Chen Yongbing, Qin Wenyuan, Yu Helong, Xu Dong
School of Information Technology, Jilin Agricultural University, Changchun, China.
Department of Electrical Engineering and Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.
Front Bioinform. 2021 Aug 12;1:693211. doi: 10.3389/fbinf.2021.693211. eCollection 2021.
Protein docking provides a structural basis for the design of drugs and vaccines. Among the processes of protein docking, quality assessment (QA) is utilized to pick near-native models from numerous protein docking candidate conformations, and it directly determines the final docking results. Although extensive efforts have been made to improve QA accuracy, it is still the bottleneck of current protein docking systems. In this paper, we presented a Deep Graph Attention Neural Network (DGANN) to evaluate and rank protein docking candidate models. DGANN learns inter-residue physio-chemical properties and structural fitness across the two protein monomers in a docking model and generates their probabilities of near-native models. On the ZDOCK decoy benchmark, our DGANN outperformed the ranking provided by ZDOCK in terms of ranking good models into the top selections. Furthermore, we conducted comparative experiments on an independent testing dataset, and the results also demonstrated the superiority and generalization of our proposed method.
蛋白质对接为药物和疫苗设计提供了结构基础。在蛋白质对接过程中,质量评估(QA)用于从众多蛋白质对接候选构象中挑选接近天然的模型,并且它直接决定最终的对接结果。尽管已经做出了广泛努力来提高QA的准确性,但它仍然是当前蛋白质对接系统的瓶颈。在本文中,我们提出了一种深度图注意力神经网络(DGANN)来评估蛋白质对接候选模型并对其进行排名。DGANN学习对接模型中两个蛋白质单体之间的残基间物理化学性质和结构适应性,并生成接近天然模型的概率。在ZDOCK诱饵基准测试中,我们的DGANN在将好的模型排名到顶级选择方面优于ZDOCK提供的排名。此外,我们在一个独立的测试数据集上进行了对比实验,结果也证明了我们所提出方法的优越性和通用性。