文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

ShapoGraphy:一款用户友好的网络应用程序,用于创建定制化且直观的生物医学数据可视化。

ShapoGraphy: A User-Friendly Web Application for Creating Bespoke and Intuitive Visualisation of Biomedical Data.

作者信息

Khawatmi Muhammed, Steux Yoann, Zourob Saddam, Sailem Heba Z

机构信息

Institute of Biomedical Engineering, Department of Engineering, University of Oxford, Oxford, United Kingdom.

出版信息

Front Bioinform. 2022 Jul 4;2:788607. doi: 10.3389/fbinf.2022.788607. eCollection 2022.


DOI:10.3389/fbinf.2022.788607
PMID:36304310
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9580894/
Abstract

Effective visualisation of quantitative microscopy data is crucial for interpreting and discovering new patterns from complex bioimage data. Existing visualisation approaches, such as bar charts, scatter plots and heat maps, do not accommodate the complexity of visual information present in microscopy data. Here we develop ShapoGraphy, a first of its kind method accompanied by an interactive web-based application for creating customisable quantitative pictorial representations to facilitate the understanding and analysis of image datasets (www.shapography.com). ShapoGraphy enables the user to create a structure of interest as a set of shapes. Each shape can encode different variables that are mapped to the shape dimensions, colours, symbols, or outline. We illustrate the utility of ShapoGraphy using various image data, including high dimensional multiplexed data. Our results show that ShapoGraphy allows a better understanding of cellular phenotypes and relationships between variables. In conclusion, ShapoGraphy supports scientific discovery and communication by providing a rich vocabulary to create engaging and intuitive representations of diverse data types.

摘要

有效可视化定量显微镜数据对于从复杂生物图像数据中解释和发现新模式至关重要。现有的可视化方法,如柱状图、散点图和热图,无法适应显微镜数据中存在的视觉信息的复杂性。在此,我们开发了ShapoGraphy,这是一种首创的方法,并配有一个基于网络的交互式应用程序,用于创建可定制的定量图形表示,以促进对图像数据集的理解和分析(www.shapography.com)。ShapoGraphy使用户能够将感兴趣的结构创建为一组形状。每个形状都可以编码映射到形状尺寸、颜色、符号或轮廓的不同变量。我们使用各种图像数据(包括高维多路复用数据)说明了ShapoGraphy的实用性。我们的结果表明,ShapoGraphy能够更好地理解细胞表型和变量之间的关系。总之,ShapoGraphy通过提供丰富的词汇来创建各种数据类型的引人入胜且直观的表示,支持科学发现和交流。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe52/9580894/92c181089f23/fbinf-02-788607-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe52/9580894/14acea58fd91/fbinf-02-788607-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe52/9580894/92c181089f23/fbinf-02-788607-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe52/9580894/14acea58fd91/fbinf-02-788607-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe52/9580894/92c181089f23/fbinf-02-788607-g004.jpg

相似文献

[1]
ShapoGraphy: A User-Friendly Web Application for Creating Bespoke and Intuitive Visualisation of Biomedical Data.

Front Bioinform. 2022-7-4

[2]
The Evolution of Scientific Visualisations: A Case Study Approach to Big Data for Varied Audiences.

Adv Exp Med Biol. 2022

[3]
Data visualisation in scoping reviews and evidence maps on health topics: a cross-sectional analysis.

Syst Rev. 2023-8-17

[4]
Visual communication of public health data: a scoping review.

Front Digit Health. 2025-4-24

[5]
cytoviewer: an R/Bioconductor package for interactive visualization and exploration of highly multiplexed imaging data.

BMC Bioinformatics. 2024-1-3

[6]
MonaGO: a novel gene ontology enrichment analysis visualisation system.

BMC Bioinformatics. 2022-2-14

[7]
PATH: An interactive web platform for analysis of time-course high-dimensional genomic data.

Int J Comput Biol Drug Des. 2020

[8]
FAIR and Interactive Data Graphics from a Scientific Knowledge Graph.

Sci Data. 2022-5-27

[9]
StarmapVis: An interactive and narrative visualisation tool for single-cell and spatial data.

Comput Struct Biotechnol J. 2023-2-14

[10]
Plant data visualisation using network graphs.

PeerJ. 2018-8-31

本文引用的文献

[1]
Gosling: A Grammar-based Toolkit for Scalable and Interactive Genomics Data Visualization.

IEEE Trans Vis Comput Graph. 2022-1

[2]
Generative Design Inspiration for Glyphs with Diatoms.

IEEE Trans Vis Comput Graph. 2022-1

[3]
DeepScratch: Single-cell based topological metrics of scratch wound assays.

Comput Struct Biotechnol J. 2020-8-29

[4]
Facetto: Combining Unsupervised and Supervised Learning for Hierarchical Phenotype Analysis in Multi-Channel Image Data.

IEEE Trans Vis Comput Graph. 2020-1

[5]
ImaCytE: Visual Exploration of Cellular Micro-Environments for Imaging Mass Cytometry Data.

IEEE Trans Vis Comput Graph. 2021-1

[6]
Multiplexed protein maps link subcellular organization to cellular states.

Science. 2018-8-3

[7]
histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data.

Nat Methods. 2017-9

[8]
A Systematic Review of Experimental Studies on Data Glyphs.

IEEE Trans Vis Comput Graph. 2016-3-31

[9]
Microenvironmental Heterogeneity Parallels Breast Cancer Progression: A Histology-Genomic Integration Analysis.

PLoS Med. 2016-2-16

[10]
Mineotaur: a tool for high-content microscopy screen sharing and visual analytics.

Genome Biol. 2015-12-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索