Suppr超能文献

可药物基因组:二十年后。

The druggable genome: Twenty years later.

作者信息

Radoux Chris J, Vianello Francesca, McGreig Jake, Desai Nikita, Bradley Anthony R

机构信息

Exscientia plc, Oxford, United Kingdom.

出版信息

Front Bioinform. 2022 Sep 30;2:958378. doi: 10.3389/fbinf.2022.958378. eCollection 2022.

Abstract

The concept of the druggable genome has been with us for 20 years. During this time, researchers have developed several methods and resources to help assess a target's druggability. In parallel, evidence for target-disease associations has been collated at scale by Open Targets. More recently, the Protein Data Bank in Europe (PDBe) have built a knowledge base matching per-residue annotations with available protein structure. While each resource is useful in isolation, we believe there is enormous potential in bringing all relevant data into a single knowledge graph, from gene-level to protein residue. Automation is vital for the processing and assessment of all available structures. We have developed scalable, automated workflows that provide hotspot-based druggability assessments for all available structures across large numbers of targets. Ultimately, we will run our method at a proteome scale, an ambition made more realistic by the arrival of AlphaFold 2. Bringing together annotations from the residue up to the gene level and building connections within the graph to represent pathways or protein-protein interactions will create complexity that mirrors the biological systems they represent. Such complexity is difficult for the human mind to utilise effectively, particularly at scale. We believe that graph-based AI methods will be able to expertly navigate such a knowledge graph, selecting the targets of the future.

摘要

可药物基因组的概念已经存在了20年。在此期间,研究人员开发了多种方法和资源来帮助评估靶点的可成药性。与此同时,开放靶点(Open Targets)大规模整理了靶点与疾病关联的证据。最近,欧洲蛋白质数据库(PDBe)建立了一个将每个残基注释与可用蛋白质结构相匹配的知识库。虽然每种资源单独使用都很有用,但我们认为将所有相关数据整合到一个从基因水平到蛋白质残基的单一知识图谱中具有巨大潜力。自动化对于处理和评估所有可用结构至关重要。我们已经开发了可扩展的自动化工作流程,可以为大量靶点的所有可用结构提供基于热点的可成药性评估。最终我们将在蛋白质组规模上运行我们的方法——随着AlphaFold 2的出现,这一目标变得更加现实。将从残基到基因水平的注释汇集在一起,并在图谱中建立连接以表示通路或蛋白质-蛋白质相互作用,将会产生反映其所代表生物系统复杂性的数据。这种复杂性让人类思维难以有效利用,尤其是在大规模情况下。我们相信基于图谱的人工智能方法将能够熟练地在这样一个知识图谱中导航,从而挑选出未来的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d715/9580872/071ece83c70a/fbinf-02-958378-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验