Bioinformatics Group, Department of Plant Sciences, Wageningen University and Research, Wageningen, the Netherlands.
School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia.
Nat Struct Mol Biol. 2022 Nov;29(11):1056-1067. doi: 10.1038/s41594-022-00849-w. Epub 2022 Nov 7.
Most proteins fold into 3D structures that determine how they function and orchestrate the biological processes of the cell. Recent developments in computational methods for protein structure predictions have reached the accuracy of experimentally determined models. Although this has been independently verified, the implementation of these methods across structural-biology applications remains to be tested. Here, we evaluate the use of AlphaFold2 (AF2) predictions in the study of characteristic structural elements; the impact of missense variants; function and ligand binding site predictions; modeling of interactions; and modeling of experimental structural data. For 11 proteomes, an average of 25% additional residues can be confidently modeled when compared with homology modeling, identifying structural features rarely seen in the Protein Data Bank. AF2-based predictions of protein disorder and complexes surpass dedicated tools, and AF2 models can be used across diverse applications equally well compared with experimentally determined structures, when the confidence metrics are critically considered. In summary, we find that these advances are likely to have a transformative impact in structural biology and broader life-science research.
大多数蛋白质折叠成决定其功能的 3D 结构,并协调细胞的生物过程。蛋白质结构预测的计算方法的最新进展已经达到了实验确定模型的准确性。尽管这已经得到了独立验证,但这些方法在结构生物学应用中的实施仍有待测试。在这里,我们评估了 AlphaFold2 (AF2) 预测在研究特征结构元素、错义变体的影响、功能和配体结合位点预测、相互作用建模以及实验结构数据建模中的应用。对于 11 个蛋白质组,与同源建模相比,平均可以更有信心地模拟 25%的额外残基,从而确定了在蛋白质数据库中很少见到的结构特征。基于 AF2 的蛋白质无序和复合物预测超过了专用工具,并且当批判性地考虑置信度指标时,与实验确定的结构相比,AF2 模型可以在各种应用中同样很好地使用。总之,我们发现这些进展可能会对结构生物学和更广泛的生命科学研究产生变革性的影响。
Nat Struct Mol Biol. 2022-11
Signal Transduct Target Ther. 2023-3-14
Comput Biol Med. 2024-6
Nat Commun. 2025-8-25
Precis Clin Med. 2025-7-1
RNA Biol. 2025-12
Protein Sci. 2025-8
Nat Methods. 2022-6
Nat Commun. 2022-3-10
Nat Struct Mol Biol. 2022-1
Bioinformatics. 2022-1-27
Mol Syst Biol. 2021-7