文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

AlphaFold2 应用的结构生物学社区评估。

A structural biology community assessment of AlphaFold2 applications.

机构信息

Bioinformatics Group, Department of Plant Sciences, Wageningen University and Research, Wageningen, the Netherlands.

School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia.

出版信息

Nat Struct Mol Biol. 2022 Nov;29(11):1056-1067. doi: 10.1038/s41594-022-00849-w. Epub 2022 Nov 7.


DOI:10.1038/s41594-022-00849-w
PMID:36344848
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9663297/
Abstract

Most proteins fold into 3D structures that determine how they function and orchestrate the biological processes of the cell. Recent developments in computational methods for protein structure predictions have reached the accuracy of experimentally determined models. Although this has been independently verified, the implementation of these methods across structural-biology applications remains to be tested. Here, we evaluate the use of AlphaFold2 (AF2) predictions in the study of characteristic structural elements; the impact of missense variants; function and ligand binding site predictions; modeling of interactions; and modeling of experimental structural data. For 11 proteomes, an average of 25% additional residues can be confidently modeled when compared with homology modeling, identifying structural features rarely seen in the Protein Data Bank. AF2-based predictions of protein disorder and complexes surpass dedicated tools, and AF2 models can be used across diverse applications equally well compared with experimentally determined structures, when the confidence metrics are critically considered. In summary, we find that these advances are likely to have a transformative impact in structural biology and broader life-science research.

摘要

大多数蛋白质折叠成决定其功能的 3D 结构,并协调细胞的生物过程。蛋白质结构预测的计算方法的最新进展已经达到了实验确定模型的准确性。尽管这已经得到了独立验证,但这些方法在结构生物学应用中的实施仍有待测试。在这里,我们评估了 AlphaFold2 (AF2) 预测在研究特征结构元素、错义变体的影响、功能和配体结合位点预测、相互作用建模以及实验结构数据建模中的应用。对于 11 个蛋白质组,与同源建模相比,平均可以更有信心地模拟 25%的额外残基,从而确定了在蛋白质数据库中很少见到的结构特征。基于 AF2 的蛋白质无序和复合物预测超过了专用工具,并且当批判性地考虑置信度指标时,与实验确定的结构相比,AF2 模型可以在各种应用中同样很好地使用。总之,我们发现这些进展可能会对结构生物学和更广泛的生命科学研究产生变革性的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d03b/9663297/cb66756f165a/41594_2022_849_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d03b/9663297/11ac8b49e2bc/41594_2022_849_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d03b/9663297/c2d1e4d67dbf/41594_2022_849_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d03b/9663297/6578edca6364/41594_2022_849_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d03b/9663297/e8c57de5538a/41594_2022_849_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d03b/9663297/2e2006f1f1eb/41594_2022_849_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d03b/9663297/cb66756f165a/41594_2022_849_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d03b/9663297/11ac8b49e2bc/41594_2022_849_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d03b/9663297/c2d1e4d67dbf/41594_2022_849_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d03b/9663297/6578edca6364/41594_2022_849_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d03b/9663297/e8c57de5538a/41594_2022_849_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d03b/9663297/2e2006f1f1eb/41594_2022_849_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d03b/9663297/cb66756f165a/41594_2022_849_Fig6_HTML.jpg

相似文献

[1]
A structural biology community assessment of AlphaFold2 applications.

Nat Struct Mol Biol. 2022-11

[2]
Blind assessment of monomeric AlphaFold2 protein structure models with experimental NMR data.

J Magn Reson. 2023-7

[3]
AlphaFold2 and its applications in the fields of biology and medicine.

Signal Transduct Target Ther. 2023-3-14

[4]
Exploring AlphaFold2's Performance on Predicting Amino Acid Side-Chain Conformations and Its Utility in Crystal Structure Determination of B318L Protein.

Int J Mol Sci. 2023-2-1

[5]
Digging into the 3D Structure Predictions of AlphaFold2 with Low Confidence: Disorder and Beyond.

Biomolecules. 2022-10-13

[6]
Beyond AlphaFold2: The Impact of AI for the Further Improvement of Protein Structure Prediction.

Methods Mol Biol. 2025

[7]
How AlphaFold2 shaped the structural coverage of the human transmembrane proteome.

Sci Rep. 2023-11-20

[8]
The impact of AI-based modeling on the accuracy of protein assembly prediction: Insights from CASP15.

Proteins. 2023-12

[9]
Overview of AlphaFold2 and breakthroughs in overcoming its limitations.

Comput Biol Med. 2024-6

[10]
How accurately can one predict drug binding modes using AlphaFold models?

Elife. 2023-12-22

引用本文的文献

[1]
Functional Relevance of CASP16 Nucleic Acid Predictions as Evaluated by Structure Providers.

Proteins. 2025-9-4

[2]
Large protein databases reveal structural complementarity and functional locality.

Nat Commun. 2025-8-25

[3]
AlphaFold modeling uncovers global structural features of class I and class II fungal hydrophobins.

Protein Sci. 2025-9

[4]
Protein language models reveal evolutionary constraints on synonymous codon choice.

bioRxiv. 2025-8-5

[5]
AlphaFold 3: an unprecedent opportunity for fundamental research and drug development.

Precis Clin Med. 2025-7-1

[6]
Modeling protein conformational ensembles by guiding AlphaFold2 with Double Electron Electron Resonance (DEER) distance distributions.

Nat Commun. 2025-8-2

[7]
Protein Catalysis Through Structural Dynamics: A Comprehensive Analysis of Energy Conversion in Enzymatic Systems and Its Computational Limitations.

Pharmaceuticals (Basel). 2025-6-24

[8]
C-terminal tagging impairs AGO2 function.

RNA Biol. 2025-12

[9]
DrugDomain 2.0: comprehensive database of protein domains-ligands/drugs interactions across the whole Protein Data Bank.

bioRxiv. 2025-7-7

[10]
PEGASUS: Prediction of MD-derived protein flexibility from sequence.

Protein Sci. 2025-8

本文引用的文献

[1]
Using AlphaFold to predict the impact of single mutations on protein stability and function.

PLoS One. 2023

[2]
Publisher Correction: Single-sequence protein structure prediction using a language model and deep learning.

Nat Biotechnol. 2022-11

[3]
ColabFold: making protein folding accessible to all.

Nat Methods. 2022-6

[4]
Improved prediction of protein-protein interactions using AlphaFold2.

Nat Commun. 2022-3-10

[5]
Can AlphaFold2 predict the impact of missense mutations on structure?

Nat Struct Mol Biol. 2022-1

[6]
Predicting and interpreting large-scale mutagenesis data using analyses of protein stability and conservation.

Cell Rep. 2022-1-11

[7]
AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models.

Nucleic Acids Res. 2022-1-7

[8]
Limits and potential of combined folding and docking.

Bioinformatics. 2022-1-27

[9]
Highly accurate protein structure prediction for the human proteome.

Nature. 2021-8

[10]
Exploring amino acid functions in a deep mutational landscape.

Mol Syst Biol. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索