Suppr超能文献

使用套索回归研究边缘型人格障碍辩证行为疗法中治疗反应的预测因素。

Investigating predictors of treatment response in Dialectical Behavior Therapy for borderline personality disorder using LASSO regression.

作者信息

Yin Qingqing, Stern Molly, Kleiman Evan M, Rizvi Shireen L

机构信息

Department of Psychology, Rutgers University, New Brunswick, NJ, USA.

Graduate School of Applied and Professional Psychology, Rutgers University, New Brunswick, NJ, USA.

出版信息

Psychother Res. 2023 Apr;33(4):455-467. doi: 10.1080/10503307.2022.2138790. Epub 2022 Oct 28.

Abstract

OBJECTIVE

Prior studies of Dialectical Behavior Therapy (DBT) for borderline personality disorder (BPD) have yielded heterogeneous findings on what factors differentiate individuals with or without sufficient treatment response, highlighting the need for further research.

METHOD

We investigated a sample of 105 individuals with BPD receiving a 6-month course of DBT. Participants were categorized as sufficient or insufficient responders using clinical and statistical change indices (based on emotion dysregulation, BPD symptom severity, utilization of DBT skills, and functional impairment). Sociodemographic, clinical severity, and treatment process factors were tested as potential predictors of treatment response using a machine learning approach (LASSO regression).

RESULTS

Two cross-validated LASSO regression models predicted treatment response (AUCs > .75). They suggested that higher homework completion rate, retention in treatment, and greater baseline severity were the most important predictors of DBT treatment response indicated by BPD symptom severity and utilization of DBT skills. Favorable effects of some aspects of therapeutic alliance during initial sessions were also found.

CONCLUSIONS

Future research may benefit from consolidating the criteria of treatment response, identifying clinically relevant variables, and testing the generalizability of findings to enhance knowledge of insufficient treatment response in DBT for BPD.

摘要

目的

先前关于辩证行为疗法(DBT)治疗边缘型人格障碍(BPD)的研究,在区分有无充分治疗反应的个体的因素方面得出了不同的结果,这凸显了进一步研究的必要性。

方法

我们调查了105名接受为期6个月DBT治疗课程的BPD患者样本。使用临床和统计变化指标(基于情绪失调、BPD症状严重程度、DBT技能的运用和功能损害)将参与者分为充分或不充分反应者。使用机器学习方法(套索回归)测试社会人口统计学、临床严重程度和治疗过程因素作为治疗反应的潜在预测因素。

结果

两个交叉验证的套索回归模型预测了治疗反应(曲线下面积>0.75)。它们表明,更高的家庭作业完成率、治疗留存率和更高的基线严重程度是由BPD症状严重程度和DBT技能运用所表明的DBT治疗反应的最重要预测因素。在初始阶段还发现了治疗联盟某些方面的积极作用。

结论

未来的研究可能受益于整合治疗反应标准、识别临床相关变量以及测试研究结果的普遍性,以增强对DBT治疗BPD时治疗反应不足的认识。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验