IEEE Trans Image Process. 2022;31:7322-7337. doi: 10.1109/TIP.2022.3216781. Epub 2022 Nov 23.
In leveraging manifold learning in domain adaptation (DA), graph embedding-based DA methods have shown their effectiveness in preserving data manifold through the Laplace graph. However, current graph embedding DA methods suffer from two issues: 1). they are only concerned with preservation of the underlying data structures in the embedding and ignore sub-domain adaptation, which requires taking into account intra-class similarity and inter-class dissimilarity, thereby leading to negative transfer; 2). manifold learning is proposed across different feature/label spaces separately, thereby hindering unified comprehensive manifold learning. In this paper, starting from our previous DGA-DA, we propose a novel DA method, namely A ttention R egularized Laplace G raph-based D omain A daptation (ARG-DA), to remedy the aforementioned issues. Specifically, by weighting the importance across different sub-domain adaptation tasks, we propose the A ttention R egularized Laplace Graph for class aware DA, thereby generating the attention regularized DA. Furthermore, using a specifically designed FEEL strategy, our approach dynamically unifies alignment of the manifold structures across different feature/label spaces, thus leading to comprehensive manifold learning. Comprehensive experiments are carried out to verify the effectiveness of the proposed DA method, which consistently outperforms the state of the art DA methods on 7 standard DA benchmarks, i.e., 37 cross-domain image classification tasks including object, face, and digit images. An in-depth analysis of the proposed DA method is also discussed, including sensitivity, convergence, and robustness.
在利用流形学习进行领域自适应 (DA) 中,基于图嵌入的 DA 方法通过拉普拉斯图在保持数据流形方面表现出了有效性。然而,现有的基于图嵌入的 DA 方法存在两个问题:1)它们只关注嵌入中底层数据结构的保留,而忽略了子领域自适应,这需要考虑到类内相似性和类间差异性,从而导致负迁移;2)流形学习是在不同的特征/标签空间中分别提出的,从而阻碍了统一的综合流形学习。在本文中,我们从之前的 DGA-DA 出发,提出了一种新的 DA 方法,即注意力正则化拉普拉斯图的领域自适应(ARG-DA),以弥补上述问题。具体来说,通过对不同子领域自适应任务的重要性进行加权,我们提出了基于注意力正则化的拉普拉斯图用于类感知的 DA,从而生成了注意力正则化的 DA。此外,使用专门设计的 FEEL 策略,我们的方法在不同的特征/标签空间中动态地统一了流形结构的对齐,从而实现了综合的流形学习。我们进行了全面的实验来验证所提出的 DA 方法的有效性,该方法在 7 个标准的 DA 基准上始终优于最先进的 DA 方法,即包括目标、人脸和数字图像在内的 37 个跨域图像分类任务。我们还讨论了对所提出的 DA 方法的深入分析,包括敏感性、收敛性和鲁棒性。