Suppr超能文献

无监督域选择图卷积网络用于胃癌术前淋巴结转移预测。

Unsupervised domain selective graph convolutional network for preoperative prediction of lymph node metastasis in gastric cancer.

机构信息

National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.

Department of Medical Imaging, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 100038, China.

出版信息

Med Image Anal. 2022 Jul;79:102467. doi: 10.1016/j.media.2022.102467. Epub 2022 Apr 28.

Abstract

Preoperative prediction of lymph node (LN) metastasis based on computed tomography (CT) scans is an important task in gastric cancer, but few machine learning-based techniques have been proposed. While multi-center datasets increase sample size and representation ability, they suffer from inter-center heterogeneity. To tackle the above issue, we propose a novel multi-source domain adaptation framework for this diagnosis task, which not only considers domain-invariant and domain-specific features, but also achieves the imbalanced knowledge transfer and class-aware feature alignment across domains. First, we develop a 3D improved feature pyramidal network (i.e., 3D IFPN) to extract common multi-level features from the high-resolution 3D CT images, where a feature dynamic transfer (FDT) module can promote the network's ability to recognize the small target (i.e., LN). Then, we design an unsupervised domain selective graph convolutional network (i.e., UDS-GCN), which mainly includes three types of components: domain-specific feature extractor, domain selector and class-aware GCN classifier. Specifically, multiple domain-specific feature extractors are employed for learning domain-specific features from the common multi-level features generated by the 3D IFPN. A domain selector via the optimal transport (OT) theory is designed for controlling the amount of knowledge transferred from source domains to the target domain. A class-aware GCN classifier is developed to explicitly enhance/weaken the intra-class/inter-class similarity of all sample pairs across domains. To optimize UDS-GCN, the domain selector and the class-aware GCN classifier provide reliable target pseudo-labels to each other in the iterative process by collaborative learning. The extensive experiments are conducted on an in-house CT image dataset collected from four medical centers to demonstrate the efficacy of our proposed method. Experimental results verify that the proposed method boosts LN metastasis diagnosis performance and outperforms state-of-the-art methods. Our code is publically available at https://github.com/infinite-tao/LN_MSDA.

摘要

术前基于计算机断层扫描 (CT) 预测淋巴结 (LN) 转移是胃癌的一项重要任务,但基于机器学习的技术很少。虽然多中心数据集增加了样本量和表示能力,但它们存在中心间异质性。针对上述问题,我们提出了一种新的多源域自适应框架用于该诊断任务,该框架不仅考虑了域不变和特定于域的特征,而且实现了跨域的不平衡知识转移和类感知特征对齐。首先,我们开发了一种 3D 改进特征金字塔网络 (即 3D IFPN),从高分辨率 3D CT 图像中提取共同的多层次特征,其中特征动态转移 (FDT) 模块可以提高网络识别小目标 (即 LN) 的能力。然后,我们设计了一种无监督域选择图卷积网络 (即 UDS-GCN),主要包括三种类型的组件:特定于域的特征提取器、域选择器和类感知 GCN 分类器。具体来说,多个特定于域的特征提取器用于从 3D IFPN 生成的共同多层次特征中学习特定于域的特征。通过最优传输 (OT) 理论设计了一个域选择器,用于控制从源域到目标域转移的知识量。开发了一个类感知 GCN 分类器,以显式增强/削弱跨域所有样本对的类内/类间相似性。为了优化 UDS-GCN,域选择器和类感知 GCN 分类器通过协作学习在迭代过程中相互提供可靠的目标伪标签。我们在来自四个医疗中心的内部 CT 图像数据集上进行了广泛的实验,以证明我们提出的方法的有效性。实验结果验证了该方法提高了 LN 转移诊断性能,优于最先进的方法。我们的代码可在 https://github.com/infinite-tao/LN_MSDA 上公开获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验