Suppr超能文献

基于统计物理学方法中的巨正则系综对OR10J5和Olfr16上花香气味剂嗅觉感知的理论研究。

Theoretical study of the olfactory perception of floral odorant on OR10J5 and Olfr16 using the grand canonical ensemble in statistical physics approach.

作者信息

Ben Khemis Ismahene, Aouaini Fatma, Ben Hadj Hassine Siwar, Ben Lamine Abdelmottaleb

机构信息

Laboratory of Quantum and Statistical Physics LR 18 ES 18, Faculty of Sciences of Monastir, Environnement Street, 5019 Monastir, Tunisia.

Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.

出版信息

Int J Biol Macromol. 2022 Dec 31;223(Pt B):1667-1673. doi: 10.1016/j.ijbiomac.2022.10.201. Epub 2022 Oct 26.

Abstract

In this work, two experimental dose-response curves of lyral molecules on the OR10J5 and the Olfr16 were employed in order to examine the evolution of physico-chemical parameters involved in the selected statistical physics model(s) to investigate the human and the mouse smelling of a floral scent. Indeed, one layer adsorption model on one type of sites with one energy (1LAM1T1E) and one layer adsorption model on two types of sites with two energies (1LAM2T2E), considered as appropriate models for the adsorption of lyral molecules on the OR10J5 and Olfr16, respectively, have been applied to fit the experimental data. Stereographic and energetic physico-chemical parameters, namely: the maximum response(s) at saturation, the number of docked molecules per olfactory receptor binding site and the concentration(s) at half saturation, were investigated to retrieve helpful information to describe the adsorption process putatively introduced in the olfaction perception. Thus, the advanced modeling results indicated that the studied molecules were docked with a non-parallel orientation (n > 1). Furthermore, for the two olfactory systems, the molar adsorption energies estimated from curves modeling were inferior to 11 kJ/mol, which showed the physisorption process of the adsorption of lyral molecules on OR10J5 and Olfr16. The 1LAM2T2E and the 1LAM1T1E were applied to estimate the OR10J5 and the Olfr175 RSDs, respectively. Hence, lyral RSDs were spread out from 0.7 to 20 nm with maximums at about 4 nm for OR10J5 and at about 3.65 nm for Olfr16. In addition, by using the two advanced models, the olfactory responses of lyral on OR10J5 and Olfr16 can be used for the energetic characterization of the lyral-OR10J5/Olfr16 binding sites interactions and allowed access to the adsorption energy distributions (AEDs). Then, two approximate olfactory bands can be determined for lyral molecules docked on OR10J5 and Olfr16, which are defined between 3 and 15.5 kJ/mol and between 3.5 and 13.5 kJ/mol, respectively. Lastly, thanks to the proposed models the adsorption entropy of the studied systems can be calculated to describe the disorder and the order on OR10J5 and Olfr16 surfaces (disorder peak of the two olfactory systems was attained when the equilibrium concentration was equal to the concentration at half saturation). Furthermore, the Gibbs free enthalpy and the internal energy were estimated and their negative values indicated that the adsorption phenomenon involved in the olfactory perception was spontaneous and exothermic nature.

摘要

在这项工作中,采用了两个关于莱莉醛分子在OR10J5和Olfr16上的实验剂量-反应曲线,以检验所选统计物理模型中涉及的物理化学参数的演变,从而研究人类和小鼠对花香的嗅觉。实际上,分别被认为是莱莉醛分子在OR10J5和Olfr16上吸附的合适模型的单能单类位点单层吸附模型(1LAM1T1E)和双能两类位点单层吸附模型(1LAM2T2E),已被用于拟合实验数据。研究了立体和能量物理化学参数,即:饱和时的最大响应、每个嗅觉受体结合位点对接分子的数量以及半饱和时的浓度,以获取有助于描述嗅觉感知中可能引入的吸附过程的信息。因此,先进的建模结果表明,所研究的分子以非平行取向对接(n > 1)。此外,对于这两个嗅觉系统,通过曲线建模估计的摩尔吸附能低于11 kJ/mol,这表明莱莉醛分子在OR10J5和Olfr16上的吸附是物理吸附过程。1LAM2T2E和1LAM1T1E分别用于估计OR10J5和Olfr175的相对标准偏差(RSD)。因此,莱莉醛的RSD范围为0.7至20 nm,OR10J5的最大值约为4 nm,Olfr16的最大值约为3.65 nm。此外,通过使用这两个先进模型,莱莉醛在OR10J5和Olfr16上的嗅觉响应可用于对莱莉醛-OR10J5/Olfr16结合位点相互作用进行能量表征,并可获得吸附能分布(AED)。然后,可以为对接在OR10J5和Olfr16上的莱莉醛分子确定两个近似的嗅觉带,分别定义在3至15.5 kJ/mol和3.5至13.5 kJ/mol之间。最后,借助所提出的模型,可以计算所研究系统的吸附熵,以描述OR10J5和Olfr16表面的无序和有序情况(当平衡浓度等于半饱和浓度时,达到两个嗅觉系统的无序峰)。此外,还估计了吉布斯自由焓和内能,它们的负值表明嗅觉感知中涉及的吸附现象是自发的且具有放热性质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验