Iaia V, Ku J, Ballard A, Larson C P, Yelton E, Liu C H, Patel S, McDermott R, Plourde B L T
Department of Physics, Syracuse University, Syracuse, NY, 13244-1130, USA.
Department of Physics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Nat Commun. 2022 Oct 28;13(1):6425. doi: 10.1038/s41467-022-33997-0.
Quantum error correction can preserve quantum information in the presence of local errors, but correlated errors are fatal. For superconducting qubits, high-energy particle impacts from background radioactivity produce energetic phonons that travel throughout the substrate and create excitations above the superconducting ground state, known as quasiparticles, which can poison all qubits on the chip. We use normal metal reservoirs on the chip back side to downconvert phonons to low energies where they can no longer poison qubits. We introduce a pump-probe scheme involving controlled injection of pair-breaking phonons into the qubit chips. We examine quasiparticle poisoning on chips with and without back-side metallization and demonstrate a reduction in the flux of pair-breaking phonons by over a factor of 20. We use a Ramsey interferometer scheme to simultaneously monitor quasiparticle parity on three qubits for each chip and observe a two-order of magnitude reduction in correlated poisoning due to background radiation.
量子纠错能够在存在局部错误的情况下保存量子信息,但相关错误却是致命的。对于超导量子比特而言,背景放射性产生的高能粒子撞击会产生高能声子,这些声子会在整个衬底中传播,并在超导基态之上产生激发,即所谓的准粒子,它们会使芯片上的所有量子比特失效。我们在芯片背面使用普通金属库将声子下转换为低能量,使其不再能使量子比特失效。我们引入了一种泵浦 - 探测方案,该方案涉及将成对破坏声子可控地注入到量子比特芯片中。我们研究了有和没有背面金属化的芯片上的准粒子中毒情况,并证明成对破坏声子的通量减少了20倍以上。我们使用拉姆齐干涉仪方案同时监测每个芯片上三个量子比特的准粒子奇偶性,并观察到由于背景辐射导致的相关中毒现象减少了两个数量级。