Suppr超能文献

乳腺 MRI 放射组学方法预测新辅助化疗病理完全缓解的准确性:系统评价和网络荟萃分析。

The accuracy of breast MRI radiomic methodologies in predicting pathological complete response to neoadjuvant chemotherapy: A systematic review and network meta-analysis.

机构信息

Department of Radiology, National University of Ireland, Galway, Ireland; The Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland.

The Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland.

出版信息

Eur J Radiol. 2022 Dec;157:110561. doi: 10.1016/j.ejrad.2022.110561. Epub 2022 Oct 17.

Abstract

BACKGROUND

Achieving pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) improves survival outcomes for breast cancer patients. Currently, conventional histopathological biomarkers predicting such responses are inconsistent. Studies investigating radiomic texture analysis from breast magnetic resonance imaging (MRI) to predict pCR have varied radiomic protocols introducing heterogeneity between results. Thus, the efficacy of radiomic profiles compared to conventional strategies to predict pCR are inconclusive.

PURPOSE

Comparing the predictive accuracy of different breast MRI radiomic protocols to identify the optimal strategy in predicting pCR to NAC.

MATERIAL AND METHODS

A systematic review and network meta-analysis was performed according to PRISMA guidelines. Four databases were searched up to October 4th, 2021. Nine predictive strategies were compared, including conventional biomarker parameters, MRI radiomic analysis conducted before, during, or after NAC, combination strategies and nomographic methodology.

RESULTS

14 studies included radiomic data from 2,722 breast cancers, of which 994 were used in validation cohorts. All MRI derived radiomic features improved predictive accuracy when compared to biomarkers, except for pre-NAC MRI radiomics (odds ratio [OR]: 0.00; 95 % CI: -0.07-0.08). During-NAC and post-NAC MRI improved predictive accuracy compared to Pre-NAC MRI (OR: 0.14, 95 % CI: 0.02-0.26) and (OR: 0.26, 95 % CI: 0.07-0.45) respectively. Combining multiple MRIs did not improve predictive performance compared to Mid- or Post-NAC MRIs individually.

CONCLUSION

Radiomic analysis of breast MRIs improve identification of patients likely to achieve a pCR to NAC. Post-NAC MRI are the most accurate imaging method to extrapolate radiomic data to predict pCR.

摘要

背景

新辅助化疗(NAC)后达到病理完全缓解(pCR)可改善乳腺癌患者的生存结局。目前,预测此类反应的常规组织病理学生物标志物并不一致。研究表明,从乳腺磁共振成像(MRI)中进行放射组学纹理分析以预测 pCR 的研究存在不同的放射组学方案,导致结果存在异质性。因此,放射组学特征与预测 pCR 的常规策略相比,其预测准确性尚无定论。

目的

比较不同乳腺 MRI 放射组学方案的预测准确性,以确定预测 NAC 后 pCR 的最佳策略。

材料与方法

根据 PRISMA 指南进行系统评价和网络荟萃分析。检索了四个数据库,截止日期为 2021 年 10 月 4 日。比较了 9 种预测策略,包括常规生物标志物参数、NAC 前、中、后进行的 MRI 放射组学分析、联合策略和列线图方法。

结果

共纳入 14 项研究,包括 2722 例乳腺癌的放射组学数据,其中 994 例用于验证队列。与生物标志物相比,所有 MRI 衍生的放射组学特征均提高了预测准确性,除了 NAC 前 MRI 放射组学(比值比[OR]:0.00;95%置信区间[CI]:-0.07 至 -0.08)。NAC 期间和 NAC 后 MRI 与 NAC 前 MRI 相比,提高了预测准确性(OR:0.14,95%CI:0.02-0.26)和(OR:0.26,95%CI:0.07-0.45)。与单独的 Mid-或 Post-NAC MRI 相比,组合多个 MRI 并不能提高预测性能。

结论

乳腺 MRI 的放射组学分析可提高识别可能达到 NAC 后 pCR 的患者的能力。NAC 后 MRI 是提取放射组学数据以预测 pCR 的最准确的影像学方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验