Suppr超能文献

放射组学中的方法学问题:对MRI预测乳腺癌新辅助化疗反应准确性的影响

Methodological issues in radiomics: impact on accuracy of MRI for predicting response to neoadjuvant chemotherapy in breast cancer.

作者信息

Netti Sofia, D'Ecclesiis Oriana, Corso Federica, Botta Francesca, Origgi Daniela, Pesapane Filippo, Agazzi Giorgio Maria, Rotili Anna, Gaeta Aurora, Scalco Elisa, Rizzo Giovanna, Jereczek-Fossa Barbara Alicja, Cassano Enrico, Curigliano Giuseppe, Gandini Sara, Raimondi Sara

机构信息

Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.

Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.

出版信息

Eur Radiol. 2024 Dec 19. doi: 10.1007/s00330-024-11260-y.

Abstract

AIM

To investigate whether methodological aspects may influence the performance of MRI-radiomic models to predict response to neoadjuvant treatment (NAT) in breast cancer (BC) patients.

MATERIALS AND METHODS

We conducted a systematic review until March 2023. A random-effects meta-analysis was performed to combine the area under the receiver operating characteristic curve (AUC) values. Publication bias was assessed using Egger's test and heterogeneity was estimated by I. A meta-regression was conducted to investigate the impact of various factors, including scanner, features' number/transformation/type, pixel/voxel scaling, etc. RESULTS: Forty-two studies were included. The summary AUC was 0.77 (95% CI: 0.74-0.81). Substantial heterogeneity was observed (I = 81%) with no publication bias (p = 0.35). Radiomic model accuracy was influenced by the scanner vendor, with lower AUCs in studies using mixed scanner vendors (AUC; 95% CI: 0.70; 0.61-0.78) compared to studies including images obtained from the same scanner (AUC (95% CI): 0.83 (0.77-0.88), 0.74 (0.67-0.82), 0.83 (0.78-0.89) for three different vendors; vendors 1, 2, and 3, respectively; p-value = 0.03 for comparison with vendor 1). Feature type also seemed to have an impact on the AUC, with higher prediction accuracy observed for studies using 3D than 2D/2.5D images (AUC; 95% CI: 0.81; 0.78-0.85 and 0.73; 0.65-0.81, respectively, p-value = 0.03). Non-significant between-study heterogeneity was observed in the studies including 3D images (I = 33%) and Vendor 1 scanners (I = 40%).

CONCLUSION

MRI-radiomics has emerged as a potential method for predicting the response to NAT in BC patients, showing promising outcomes. Nevertheless, it is important to acknowledge the diversity among the methodological choices applied. Further investigations should prioritize achieving standardized protocols, and enhancing methodological rigor in MRI-radiomics.

KEY POINTS

Question Do methodological aspects influence the performance of MRI-radiomic models in predicting response to NAT in BC patients? Findings Radiomic model accuracy was influenced by the scanner vendor and feature type. Clinical relevance Methodological discrepancies affect the performance of MRI-radiomic models. Developing standardized protocols and enhancing methodological rigor in these studies should be prioritized.

摘要

目的

探讨方法学方面是否会影响MRI放射组学模型预测乳腺癌(BC)患者新辅助治疗(NAT)反应的性能。

材料与方法

我们进行了一项截至2023年3月的系统评价。采用随机效应荟萃分析来合并受试者工作特征曲线(AUC)下的面积值。使用Egger检验评估发表偏倚,并通过I2估计异质性。进行荟萃回归以研究各种因素的影响,包括扫描仪、特征数量/变换/类型、像素/体素缩放等。结果:纳入42项研究。汇总AUC为0.77(95%CI:0.74 - 0.81)。观察到显著的异质性(I2 = 81%),且无发表偏倚(p = 0.35)。放射组学模型的准确性受扫描仪供应商的影响,与使用同一扫描仪获取图像的研究相比,使用混合扫描仪供应商的研究AUC较低(AUC;95%CI:0.70;0.61 - 0.78),对于三个不同供应商(分别为供应商1、2和3)的研究,AUC(95%CI)分别为0.83(0.77 - 0.88)、0.74(0.67 - 0.82)、0.83(0.78 - 0.89);与供应商1比较的p值 = 0.03)。特征类型似乎也对AUC有影响,使用3D图像的研究比使用2D/2.5D图像的研究预测准确性更高(AUC;95%CI分别为0.81;0.78 - 0.85和0.73;0.65 - 0.81,p值 = 0.03)。在包括3D图像的研究(I2 = 33%)和供应商1扫描仪的研究(I2 = 40%)中观察到研究间的异质性不显著。

结论

MRI放射组学已成为预测BC患者NAT反应的一种潜在方法,显示出有前景的结果。然而,必须认识到所应用的方法学选择之间的差异。进一步的研究应优先实现标准化方案,并提高MRI放射组学的方法学严谨性。

关键点

问题方法学方面是否会影响MRI放射组学模型预测BC患者NAT反应的性能?发现放射组学模型的准确性受扫描仪供应商和特征类型的影响。临床相关性方法学差异影响MRI放射组学模型的性能。应优先制定标准化方案并提高这些研究的方法学严谨性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验