Suppr超能文献

基于MRI的人工智能模型在乳腺癌新辅助治疗后手术个性化中的应用:西太平洋地区证据的叙述性综述

MRI-based artificial intelligence models for post-neoadjuvant surgery personalization in breast cancer: a narrative review of evidence from Western Pacific.

作者信息

Lin Yingyi, Cheng Minyi, Wu Cangui, Huang Yuhong, Zhu Teng, Li Jieqing, Gao Hongfei, Wang Kun

机构信息

School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China.

Department of Breast Cancer, Cancer Centre, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China.

出版信息

Lancet Reg Health West Pac. 2024 Dec 6;57:101254. doi: 10.1016/j.lanwpc.2024.101254. eCollection 2025 Apr.

Abstract

Breast magnetic resonance imaging (MRI) is the most sensitive imaging method for diagnosing breast cancer and assessing treatment response. Artificial intelligence (AI) and radiomics offer new opportunities to identify patterns in imaging data, supporting personalized post-neoadjuvant surgical decisions. This paper reviewed breast MRI-based AI models for predicting outcomes after neoadjuvant therapy, with a focus on evidence from the Western Pacific region, to evaluate the quality of existing models, discuss their inherent limitations, and outline potential future directions. A literature search in MEDLINE, EMBASE, and Web of Science identified 51 relevant studies in the region, with the majority conducted in China, followed by South Korea and Japan. Most studies focused on predicting pathologic complete response (pCR), with a median sample size of 152 and largely retrospective single-center designs. Model performance was commonly assessed using validation sets, with pooled sensitivity and specificity for pCR prediction showing promising results. Models incorporating multitemporal MRI features were associated with improved accuracy. While MRI-based AI models show potential for guiding surgical planning, improved methodological quality and algorithmic explainability are needed to facilitate clinical translation.

摘要

乳腺磁共振成像(MRI)是诊断乳腺癌和评估治疗反应最敏感的成像方法。人工智能(AI)和放射组学为识别成像数据中的模式提供了新机会,有助于支持个性化的新辅助治疗后手术决策。本文回顾了基于乳腺MRI的AI模型在预测新辅助治疗后结果方面的应用,重点关注西太平洋地区的证据,以评估现有模型的质量,讨论其固有局限性,并概述未来潜在的发展方向。通过在MEDLINE、EMBASE和科学网进行文献检索,确定了该地区51项相关研究,其中大部分在中国进行,其次是韩国和日本。大多数研究集中在预测病理完全缓解(pCR),样本量中位数为152,且大多为回顾性单中心设计。模型性能通常使用验证集进行评估,pCR预测的合并敏感性和特异性显示出有前景的结果。纳入多期MRI特征的模型准确性更高。虽然基于MRI的AI模型在指导手术规划方面显示出潜力,但需要提高方法学质量和算法可解释性以促进临床转化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d636/12121432/927fa0bdacba/gr2.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验