Department of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea.
Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
Eur J Radiol. 2022 Dec;157:110564. doi: 10.1016/j.ejrad.2022.110564. Epub 2022 Oct 17.
We aimed to evaluate the performance of a fully automated quantitative software in detecting interstitial lung abnormalities (ILA) according to the Fleischner Society guidelines on routine chest CT compared with radiologists' visual analysis.
This retrospective single-centre study included participants with ILA findings and 1:2 matched controls who underwent routine chest CT using various CT protocols for health screening. Two thoracic radiologists independently reviewed the CT images using the Fleischner Society guidelines. We developed a fully automated quantitative tool for detecting ILA by modifying deep learning-based quantification of interstitial lung disease and evaluated its performance using the radiologists' consensus for ILA as a reference standard.
A total of 336 participants (mean age, 70.5 ± 6.1 years; M:F = 282:54) were included. Inter-reader agreements were substantial for the presence of ILA (weighted κ, 0.74) and fair for its subtypes (weighted κ, 0.38). The quantification system for identifying ILA using a threshold of 5 % in at least one zone showed 67.6 % sensitivity, 93.3 % specificity, and 90.5 % accuracy. Eight of 20 (40 %) false positives identified by the system were underestimated by readers for ILA extent. Contrast-enhancement in a certain vendor and suboptimal inspiration caused a true false-positive on the system (all P < 0.05). The best cut-off value of abnormality extent detecting ILA on the system was 3.6 % (sensitivity, 84.8 %; specificity 92.4 %).
Inter-reader agreement was substantial for ILA but only fair for its subtypes. Applying an automated quantification system in routine clinical practice may aid the objective identification of ILA.
我们旨在评估一种全自动定量软件在根据弗莱舍社会常规胸部 CT 指南检测间质性肺异常(ILA)方面的性能,与放射科医生的视觉分析进行比较。
这项回顾性单中心研究纳入了 ILA 发现患者和 1:2 匹配对照者,他们因健康筛查而接受了各种 CT 协议的常规胸部 CT。两名胸部放射科医生使用弗莱舍社会指南独立审查 CT 图像。我们通过修改基于深度学习的间质性肺病定量方法开发了一种用于检测 ILA 的全自动定量工具,并使用放射科医生对 ILA 的共识作为参考标准来评估其性能。
共有 336 名参与者(平均年龄 70.5 ± 6.1 岁;M:F=282:54)被纳入。ILA 存在的读者间一致性为显著(加权 κ,0.74),其亚型的一致性为一般(加权 κ,0.38)。使用至少一个区域中 5%的阈值识别 ILA 的定量系统显示出 67.6%的敏感性、93.3%的特异性和 90.5%的准确性。系统识别的 20 个(40%)假阳性中有 8 个被读者低估了 ILA 程度。在某些供应商中增强对比度和不充分的吸气导致系统出现真正的假阳性(均 P<0.05)。系统上检测 ILA 的异常程度的最佳截断值为 3.6%(敏感性,84.8%;特异性 92.4%)。
ILA 的读者间一致性为显著,但仅为一般。在常规临床实践中应用自动化定量系统可能有助于客观识别 ILA。