Center for Biomedical Imaging, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China.
Breast. 2022 Dec;66:183-190. doi: 10.1016/j.breast.2022.10.004. Epub 2022 Oct 19.
Predicting pathological complete response (pCR) for patients receiving neoadjuvant chemotherapy (NAC) is crucial in establishing individualized treatment. Whole-slide images (WSIs) of tumor tissues reflect the histopathologic information of the tumor, which is important for therapeutic response effectiveness. In this study, we aimed to investigate whether predictive information for pCR could be detected from WSIs.
We retrospectively collected data from four cohorts of 874 patients diagnosed with biopsy-proven breast cancer. A deep learning pathological model (DLPM) was constructed to predict pCR using biopsy WSIs in the primary cohort, and it was then validated in three external cohorts. The DLPM could generate a deep learning pathological score (DLPs) for each patient; stromal tumor-infiltrating lymphocytes (TILs) were selected for comparison with DLPs.
The WSI feature-based DLPM showed good predictive performance with the highest area under the curve (AUC) of 0.72 among the cohorts. Alternatively, the combination of the DLPM and clinical characteristics offered a better prediction performance (AUC >0.70) in all cohorts. We also evaluated the performance of DLPM in three different breast subtypes with the best prediction for the triple-negative breast cancer (TNBC) subtype (AUC: 0.73). Moreover, DLPM combined with clinical characteristics and stromal TILs achieved the highest AUC in the primary cohort (AUC: 0.82) and validation cohort 1 (AUC: 0.80).
Our study suggested that WSIs integrated with deep learning could potentially predict pCR to NAC in breast cancer. The predictive performance will be improved by combining clinical characteristics. DLPs from DLPM can provide more information compared to stromal TILs for pCR prediction.
预测接受新辅助化疗(NAC)的患者的病理完全缓解(pCR)对于制定个体化治疗方案至关重要。肿瘤组织的全切片图像(WSI)反映了肿瘤的组织病理学信息,这对于治疗反应效果很重要。在这项研究中,我们旨在研究是否可以从 WSI 中检测到预测 pCR 的信息。
我们回顾性地收集了来自四个队列的 874 名经活检证实患有乳腺癌患者的数据。构建了一种深度学习病理模型(DLPM),使用原发性队列中的活检 WSI 预测 pCR,并在三个外部队列中进行验证。DLPM 可以为每个患者生成深度学习病理评分(DLP);选择间质肿瘤浸润淋巴细胞(TILs)与 DLP 进行比较。
基于 WSI 特征的 DLPM 表现出良好的预测性能,在所有队列中 AUC 最高为 0.72。此外,DLPM 与临床特征的结合在所有队列中提供了更好的预测性能(AUC>0.70)。我们还评估了 DLPM 在三种不同的乳腺癌亚型中的性能,对三阴性乳腺癌(TNBC)亚型的预测最佳(AUC:0.73)。此外,在原发性队列(AUC:0.82)和验证队列 1(AUC:0.80)中,DLPM 与临床特征和间质 TILs 的结合实现了最高的 AUC。
我们的研究表明,与深度学习相结合的 WSI 可能能够预测乳腺癌对 NAC 的 pCR。通过结合临床特征,可以提高预测性能。与间质 TILs 相比,DLPM 的 DLP 可为 pCR 预测提供更多信息。