Suppr超能文献

使用深度学习(DL)方法预测乳腺癌新辅助化疗的病理完全缓解。

Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method.

机构信息

Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital and Institute, Beijing, China.

Radiology, Peking University Cancer Hospital & Institute, Beijing, China.

出版信息

Thorac Cancer. 2020 Mar;11(3):651-658. doi: 10.1111/1759-7714.13309. Epub 2020 Jan 16.

Abstract

BACKGROUND

The aim of the study was to develop a deep learning (DL) algorithm to evaluate the pathological complete response (pCR) to neoadjuvant chemotherapy in breast cancer.

METHODS

A total of 302 breast cancer patients in this retrospective study were randomly divided into a training set (n = 244) and a validation set (n = 58). Tumor regions were manually delineated on each slice by two expert radiologists on enhanced T1-weighted images. Pathological results were used as ground truth. Deep learning network contained five repetitions of convolution and max-pooling layers and ended with three dense layers. The pre-NAC model and post-NAC model inputted six phases of pre-NAC and post-NAC images, respectively. The combined model used 12 channels from six phases of pre-NAC and six phases of post-NAC images. All models above included three indexes of molecular type as one additional input channel.

RESULTS

The training set contained 137 non-pCR and 107 pCR participants. The validation set contained 33 non-pCR and 25 pCR participants. The area under the receiver operating characteristic (ROC) curve (AUC) of three models was 0.553 for pre-NAC, 0.968 for post-NAC and 0.970 for the combined data, respectively. A significant difference was found in AUC between using pre-NAC data alone and combined data (P < 0.001). The positive predictive value of the combined model was greater than that of the post-NAC model (100% vs. 82.8%, P = 0.033).

CONCLUSION

This study established a deep learning model to predict PCR status after neoadjuvant therapy by combining pre-NAC and post-NAC MRI data. The model performed better than using pre-NAC data only, and also performed better than using post-NAC data only.

KEY POINTS

Significant findings of the study. It achieved an AUC of 0.968 for pCR prediction. It showed a significantly greater AUC than using pre-NAC data only. What this study adds This study established a deep learning model to predict PCR status after neoadjuvant therapy by combining pre-NAC and post-NAC MRI data.

摘要

背景

本研究旨在开发一种深度学习(DL)算法,以评估乳腺癌新辅助化疗的病理完全缓解(pCR)。

方法

本回顾性研究共纳入 302 例乳腺癌患者,随机分为训练集(n=244)和验证集(n=58)。由两位专家放射科医生在增强 T1 加权图像上手动勾画肿瘤区域。病理结果作为金标准。深度学习网络包含五个卷积和最大池化层的重复,并以三个密集层结束。预 NAC 模型和 post-NAC 模型分别输入六个阶段的预 NAC 和 post-NAC 图像。联合模型使用来自预 NAC 和 post-NAC 六个阶段的 12 个通道图像。上述所有模型均包含三个分子类型指标作为一个附加输入通道。

结果

训练集包含 137 例非 pCR 和 107 例 pCR 患者。验证集包含 33 例非 pCR 和 25 例 pCR 患者。三个模型的接收者操作特征(ROC)曲线下面积(AUC)分别为预 NAC 时为 0.553,post-NAC 时为 0.968,联合数据时为 0.970。单独使用预 NAC 数据和联合数据的 AUC 之间存在显著差异(P<0.001)。联合模型的阳性预测值大于 post-NAC 模型(100% vs. 82.8%,P=0.033)。

结论

本研究通过结合新辅助治疗前后的 MRI 数据,建立了一种深度学习模型来预测新辅助治疗后的 pCR 状态。该模型的表现优于仅使用预 NAC 数据,也优于仅使用 post-NAC 数据。

重点

研究的重要发现。该模型预测 pCR 的 AUC 为 0.968。与仅使用预 NAC 数据相比,其 AUC 显著更大。本研究的补充内容。本研究通过结合新辅助治疗前后的 MRI 数据,建立了一种深度学习模型来预测新辅助治疗后的 pCR 状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bac6/7049483/92634945648f/TCA-11-651-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验